Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 107301    DOI: 10.1088/1674-1056/ace158
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermal Hall effect and the Wiedemann-Franz law in Chern insulator

Anxin Wang(王安新) and Tao Qin(秦涛)
School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China
Abstract  Thermal Hall effect, where a transverse temperature difference is generated by implementing a longitudinal temperature gradient and an external magnetic field in the perpendicular direction to systems, is a useful tool to reveal transport properties of quantum materials. A systematic study of the thermal Hall effect in a Chern insulator is still lacking. Here, using the Landauer-Büttiker formula, we investigated the thermal Hall transport of the Harper-Hofstadter model with flux $\varphi$=1/2 and its generalizations. We demonstrated that the Wiedemann-Franz law, which states that the thermal Hall conductivity is linearly proportional to the quantum Hall conductivity in the low temperature limit, is still valid in this Chern insulator, and that the thermal Hall conductivity can be used to characterize the topological properties of quantum materials.
Keywords:  thermal Hall effect      quantum Hall effect      Chern insulator      Landauer-Büttike formula  
Received:  19 March 2023      Revised:  12 June 2023      Accepted manuscript online:  25 June 2023
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.43.-f (Quantum Hall effects)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U2032164 and 12174394) and the Start-up Fund from Anhui University in China.
Corresponding Authors:  Tao Qin     E-mail:  taoqin@ahu.edu.cn

Cite this article: 

Anxin Wang(王安新) and Tao Qin(秦涛) Thermal Hall effect and the Wiedemann-Franz law in Chern insulator 2023 Chin. Phys. B 32 107301

[1] Kane C L and Fisher M P A 2005 Phys. Rev. B 55 15832
[2] Qin T, Niu Q and Shi J 2011 Phys. Rev. Lett. 107 236601
[3] Onose Y, Shiomi Y and Tokura Y 2008 Phys. Rev. Lett. 100 016601
[4] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
[5] Long W, Zhang H and Sun Q F 2011 Phys. Rev. B 84 075416
[6] Wakeham N, Bangura A F, Xu X, Mercure J F, Greenblatt M and Hussey N E 2011 Nat. Commun. 2 396
[7] Grissonnanche G, Legros A, Badoux S, Lefrançois E, Zatko V, Lizaire M, Laliberté F, Gourgout A, Zhou J S, Pyon S, et al. 2019 Nature 571 376
[8] Grissonnanche G, Thériault S, Gourgout A, Boulanger M E, Lefrançois E, Ataei A, Laliberté F, Dion M, Zhou J S, Pyon S, et al. 2020 Nat. Phys. 16 1108
[9] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[10] Harper P G 1955 Proc. Phys. Soc. A 68 874
[11] Hofstadter D R 1976 Phys. Rev. B 14 2239
[12] Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D and Esslinger T 2014 Nature 515 237
[13] Fläschner N, Rem B S, Tarnowski M, Vogel D, Lühmann D S, Sengstock K and Weitenberg C 2016 Science 352 1091
[14] Miyake H, Siviloglou G A, Kennedy C J, Burton W C and Ketterle W 2013 Phys. Rev. Lett. 111 185302
[15] Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B and Bloch I 2013 Phys. Rev. Lett. 111 185301
[16] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, et al. 2013 Nature 497 598
[17] Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, et al. 2013 Science 340 1427
[18] Hatsugai Y and Kohmoto M 1990 Phys. Rev. B 42 8282
[19] Delplace P and Montambaux G 2010 Phys. Rev. B 82 035438
[20] Loring T A and Hastings M B 2010 Europhys. Lett. 92 67004
[21] Kuno Y 2019 Phys. Rev. B 100 054108
[22] Zheng J H, Qin T and Hofstetter W 2019 Phys. Rev. B 99 125138
[23] Chen J C, Wang J and Sun Q F 2012 Phys. Rev. B 85 125401
[24] Harper F, Simon S H and Roy R 2014 Phys. Rev. B 90 075104
[25] Thonhauser T and Vanderbilt D 2006 Phys. Rev. B 74 235111
[26] Smrcka L and Streda P 1977 J. Phys. C: Solid State Physics 10 2153
[27] Cheng S G, Xing Y, Sun Q F and Xie X C 2008 Phys. Rev. B 78 045302
[28] Jiang H, Cheng S, Sun Q F and Xie X C 2009 Phys. Rev. Lett. 103 036803
[29] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[30] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[31] Chauwin M, Siu Z B and Jalil M B A 2022 Phys. Rev. Appl. 17 024035
[32] Oka T and Aoki H 2009 Phys. Rev. B 79 081406
[33] Lee C H, Imhof S, Berger C, Bayer F, Brehm J, Molenkamp L W, Kiessling T and Thomale R 2018 Commun. Phys. 1 39
[34] Yatsugi K, Yoshida T, Mizoguchi T, Kuno Y, Iizuka H, Tadokoro Y and Hatsugai Y 2022 Commun. Phys. 5 180
[35] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405
[1] Phase transition in bilayer quantum Hall system with opposite magnetic field
Ke Yang(杨珂). Chin. Phys. B, 2023, 32(9): 097303.
[2] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[3] Generalization of the theory of three-dimensional quantum Hall effect of Fermi arcs in Weyl semimetal
Mingqi Chang(苌名起), Yunfeng Ge(葛云凤), and Li Sheng(盛利). Chin. Phys. B, 2022, 31(5): 057304.
[4] Revealing Chern number from quantum metric
Anwei Zhang(张安伟). Chin. Phys. B, 2022, 31(4): 040201.
[5] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[6] Integer quantum Hall effect in Kekulé-patterned graphene
Yawar Mohammadi and Samira Bahrami. Chin. Phys. B, 2022, 31(1): 017305.
[7] Some experimental schemes to identify quantum spin liquids
Yonghao Gao(高永豪), Gang Chen(陈钢). Chin. Phys. B, 2020, 29(9): 097501.
[8] Magnetotransport properties of graphene layers decorated with colloid quantum dots
Ri-Jia Zhu(朱日佳), Yu-Qing Huang(黄雨青), Jia-Yu Li(李佳玉), Ning Kang(康宁), Hong-Qi Xu(徐洪起). Chin. Phys. B, 2019, 28(6): 067201.
[9] Entangled multi-knot lattice model of anyon current
Tieyan Si(司铁岩). Chin. Phys. B, 2019, 28(4): 040501.
[10] Coulomb-dominated oscillations in a graphene quantum Hall Fabry-Pérot interferometer
Guan-Qun Zhang(张冠群), Li Lin(林立), Hailin Peng(彭海琳), Zhongfan Liu(刘忠范), Ning Kang(康宁), Hong-Qi Xu(徐洪起). Chin. Phys. B, 2019, 28(12): 127203.
[11] Sub-millikelvin station at Synergetic Extreme Condition User Facility
Zhi Gang Cheng(程智刚), Jie Fan(樊洁), Xiunian Jing(景秀年), Li Lu(吕力). Chin. Phys. B, 2018, 27(7): 070702.
[12] Two-dimensional transport and strong spin-orbit interaction in SrMnSb2
Jiwei Ling(凌霁玮), Yanwen Liu(刘彦闻), Zhao Jin(金昭), Sha Huang(黄沙), Weiyi Wang(王伟懿), Cheng Zhang(张成), Xiang Yuan(袁翔), Shanshan Liu(刘姗姗), Enze Zhang(张恩泽), Ce Huang(黄策), Raman Sankar, Fang-Cheng Chou, Zhengcai Xia(夏正才), Faxian Xiu(修发贤). Chin. Phys. B, 2018, 27(1): 017504.
[13] From magnetically doped topological insulator to the quantum anomalous Hall effect
He Ke (何珂), Ma Xu-Cun (马旭村), Chen Xi (陈曦), Lü Li (吕力), Wang Ya-Yu (王亚愚), Xue Qi-Kun (薛其坤). Chin. Phys. B, 2013, 22(6): 067305.
[14] Graphene-like physics in optical lattices
Mei Feng (梅锋), Zhang Dan-Wei (张丹伟), Zhu Shi-Liang (朱诗亮). Chin. Phys. B, 2013, 22(11): 116106.
[15] The quantum Hall's effect: A quantum electrodynamic phenomenon
A. I. Arbab. Chin. Phys. B, 2012, 21(12): 127301.
No Suggested Reading articles found!