Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097501    DOI: 10.1088/1674-1056/ab9df0
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Some experimental schemes to identify quantum spin liquids

Yonghao Gao(高永豪)1, Gang Chen(陈钢)2,1
1 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China;
2 Department of Physics and HKU-UCAS Joint Institute for Theoretical and Computational Physics at Hong Kong, The University of Hong Kong, Hong Kong, China
Abstract  

Despite the apparent ubiquity and variety of quantum spin liquids in theory, experimental confirmation of spin liquids remains to be a huge challenge. Motivated by the recent surge of evidences for spin liquids in a series of candidate materials, we highlight the experimental schemes, involving the thermal Hall transport and spectrum measurements, that can result in smoking-gun signatures of spin liquids beyond the usual ones. For clarity, we investigate the square lattice spin liquids and theoretically predict the possible phenomena that may emerge in the corresponding spin liquids candidates. The mechanisms for these signatures can be traced back to either the intrinsic characters of spin liquids or the external field-driven behaviors. Our conclusion does not depend on the geometry of lattices and can broadly apply to other relevant spin liquids.

Keywords:  quantum spin liquids      fractionalization      neutron scattering      thermal Hall effect  
Received:  19 April 2020      Revised:  14 June 2020      Accepted manuscript online:  18 June 2020
PACS:  75.10.Kt (Quantum spin liquids, valence bond phases and related phenomena)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  61.05.fg (Neutron scattering (including small-angle scattering))  
  29.30.Hs (Neutron spectroscopy)  
Fund: 

Project supported by the National Key R&D Program of China (Grant Nos. 2016YFA0301001, 2018YFGH000095, and 2016YFA0300500), Shanghai Municipal Science and Technology Major Project, China (Grant No. 2019SHZDZX04), and the Research Grants Council of Hong Kong with General Research Fund, China (Grant No. 17303819).

Corresponding Authors:  Gang Chen     E-mail:  gangchen.physics@gmail.com

Cite this article: 

Yonghao Gao(高永豪), Gang Chen(陈钢) Some experimental schemes to identify quantum spin liquids 2020 Chin. Phys. B 29 097501

[1] Anderson P W 1987 Science 235 1196
[2] Kitaev A 2006 Annals of Physics 321 2
[3] Balents L 2010 Nature 464 199
[4] Zhou Y, Kanoda K and Ng T K 2017 Rev. Mod. Phys. 89 025003
[5] Savary L and Balents L 2016 Reports on Progress in Physics 80 016502
[6] Ma Z, Ran K, Wang J, et al. 2018 Chin. Phys. B 27 106101
[7] Anderson P W 1973 Materials Research Bulletin 8 153
[8] Han T H, Helton J S, Chu S, et al. 2012 Nature 492 406
[9] Shen Y, Li Y D, Wo H, et al. 2016 Nature 540 559
[10] Balz C, Lake B, Reuther J, et al. 2016 Nat. Phys. 12 942
[11] Gao B, Chen T, Tam D W, et al. 2019 Nat. Phys. 15 1052
[12] Ma Z, Wang J, Dong Z Y, et al. 2018 Phys. Rev. Lett. 120 087201
[13] Kimchi I, Nahum A and Senthil T 2018 Phys. Rev. X 8 031028
[14] Zhu Z, Maksimov P A and White S R and Chernyshev A L 2017 Phys. Rev. Lett. 119 157201
[15] Wen X G 2002 Phys. Rev. B 65 165113
[16] Essin A M and Hermele M 2013 Phys. Rev. B 87 104406
[17] Essin A M and Hermele M 2014 Phys. Rev. B 90 121102
[18] Chen G 2017 Phys. Rev. B 96 085136
[19] Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
[20] Laughlin R B 1983 Phys. Rev. Lett. 50 1395
[21] Lee, P A, Nagaosa, N and Wen X G 2006 Rev. Mod. Phys. 78 17
[22] Li T, Becca F, Hu W and Sorella S 2012 Phys. Rev. B 86 075111
[23] Capriotti L and Becca F and Parola A and Sorella S 2001 Phys. Rev. Lett. 87 097201
[24] Yu S L, Wang W, Dong Z Y, Yao Z J and Li J X 2018 Phys. Rev. B 98 134410
[25] Hu W J, Becca F, Parola A and Sorella S 2013 Phys. Rev. B 88 060402
[26] Jiang H C, Yao H and Balents L 2012 Phys. Rev. B 86 024424
[27] Sachdev S 1992 Phys. Rev. B 45 12377
[28] Li Y D, Yang X, Zhou Y and Chen G 2019 Phys. Rev. B 99 205119
[29] Li Y D and Chen G 2017 Phys. Rev. B 96 075105
[30] Li Y D, Lu Y M and Chen G 2017 Phys. Rev. B 96 054445
[31] Gao Y H and Chen G 2020 SciPost Physics Core 2 004
[32] Dzyaloshinsky I 1958 Journal of Physics and Chemistry of Solids 4 241
[33] Moriya T 1960 Phys. Rev. 120 91
[34] Sen D and Chitra R 1995 Phys. Rev. B 51 1922
[35] Motrunich O I 2006 Phys. Rev. B 73 155115
[36] Katsura H, Nagaosa N and Lee P A 2010 Phys. Rev. Lett. 104 066403
[37] Polyakov A M 1977 Nuclear Physics B 120 429
[38] Qin T, Niu Q and Shi J 2011 Phys. Rev. Lett. 107 236601
[39] Kasahara Y, Ohnishi T, Mizukami Y, et al. 2018 Nature 559 227
[1] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[2] Excess-iron driven spin glass phase in Fe1+yTe1-xSex
Long Tian(田龙), Panpan Liu(刘盼盼), Tao Hong(洪涛), Tilo Seydel, Xingye Lu(鲁兴业), Huiqian Luo(罗会仟), Shiliang Li(李世亮), and Pengcheng Dai(戴鹏程). Chin. Phys. B, 2021, 30(8): 087402.
[3] Effective model for rare-earth Kitaev materials and its classical Monte Carlo simulation
Mengjie Sun(孙梦杰), Huihang Lin(林慧航), Zheng Zhang(张政), Yanzhen Cai(蔡焱桢), Wei Ren(任玮), Jing Kang(康靖), Jianting Ji(籍建葶), Feng Jin(金峰), Xiaoqun Wang(王孝群), Rong Yu(俞榕), Qingming Zhang(张清明), and Zhengxin Liu(刘正鑫). Chin. Phys. B, 2021, 30(8): 087503.
[4] Crystal growth and magnetic properties of quantum spin liquid candidate KErTe2
Weiwei Liu(刘维维), Dayu Yan(闫大禹), Zheng Zhang(张政), Jianting Ji(籍建葶), Youguo Shi(石友国), Feng Jin(金峰), and Qingming Zhang(张清明). Chin. Phys. B, 2021, 30(10): 107504.
[5] Physical properties and magnetic structure of a layered antiferromagnet PrPd0.82Bi2
Meng Yang(杨萌), Changjiang Yi(伊长江), Fengfeng Zhu(朱锋锋), Xiao Wang(王霄), Dayu Yan(闫大禹), Shanshan Miao(苗杉杉), Yixi Su(苏夷希), Youguo Shi(石友国). Chin. Phys. B, 2020, 29(6): 067502.
[6] Neutron-based characterization techniques for lithium-ion battery research
Enyue Zhao(赵恩岳), Zhi-Gang Zhang(张志刚), Xiyang Li(李西阳), Lunhua He(何伦华), Xiqian Yu(禹习谦), Hong Li(李泓), Fangwei Wang(王芳卫). Chin. Phys. B, 2020, 29(1): 018201.
[7] A revised jump-diffusion and rotation-diffusion model
Hua Li(李华), Yu-Hang Chen(陈昱沆), Bin-Ze Tang(唐宾泽). Chin. Phys. B, 2019, 28(5): 056105.
[8] Recent progress on magnetic-field studies on quantum-spin-liquid candidates
Zhen Ma(马祯), Kejing Ran(冉柯静), Jinghui Wang(王靖珲), Song Bao(鲍嵩), Zhengwei Cai(蔡正蔚), Shichao Li(李世超), Jinsheng Wen(温锦生). Chin. Phys. B, 2018, 27(10): 106101.
[9] Multiscale structures and phase transitions in metallic glasses: A scattering perspective
Si Lan(兰司), Zhenduo Wu(吴桢舵), Xun-Li Wang(王循理). Chin. Phys. B, 2017, 26(1): 017104.
[10] Dynamic behaviors of water contained in calcium—silicate—hydrate gel at different temperatures studied by quasi-elastic neutron scattering spectroscopy
Zhou Yi(易洲), Pei-Na Deng(邓沛娜), Li-Li Zhang(张丽丽), Hua Li(李华). Chin. Phys. B, 2016, 25(10): 106401.
[11] Vibrational analysis of L-serine using the density functional theory
Zhang Ying (张英), Yin Wen (殷雯), Zhang Peng (张鹏), Xu Chang-Ye (徐昌业), Han Sheng-Hao (韩圣浩), Li Ji-Chen (李济晨). Chin. Phys. B, 2005, 14(12): 2585-2589.
[12] Vibration properties of low-fraction hydrogen in deuterium ices
Wang Yan (王燕), Dong Shun-Le (董顺乐). Chin. Phys. B, 2005, 14(10): 1942-1945.
[13] NEUTRON SCATTERING AND LATTICE DYNAMICAL STUDIES OF THE HIGH-PRESSURE PHASE ICE (I)
Dong Shun-le (董顺乐), Wang Yan (王燕), Li Qi (李琪). Chin. Phys. B, 2001, 10(10): 951-957.
[14] NEUTRON SCATTERING AND LATTICE DYNAMICAL STUDIES OF THE HIGH-PRESSURE PHASE ICE (II)
Dong Shun-le (董顺乐), Wang Yan (王燕). Chin. Phys. B, 2001, 10(10): 958-965.
No Suggested Reading articles found!