Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 040501    DOI: 10.1088/1674-1056/28/4/040501
GENERAL Prev   Next  

Entangled multi-knot lattice model of anyon current

Tieyan Si(司铁岩)
Physics Department, School of Sciences, Key Laboratory of Microsystems and Microstructures Manufacturing-Ministry of Education, Harbin Institute of Technology, Harbin 150080, China
Abstract  

We proposed an entangled multi-knot lattice model to explore the exotic statistics of anyons. Long-range coupling interaction is a fundamental character of this knot lattice model. The short-range coupling models, such as the Ising model, Hamiltonian model of quantum Hall effect, fermion pairing model, Kitaev honeycomb lattice model, and so on, are the short-range coupling cases of this knot lattice model. The long-range coupling knot lattice model bears Abelian and non-Abelian anyons, and shows integral and fractional filling states like the quantum Hall system. The fusion rules of anyons are explicitly demonstrated by braiding crossing states. The eigenstates of quantum models can be represented by a multi-layer link lattice pattern whose topology is characterized by the linking number. This topological linking number offers a new quantity to explain and predict physical phenomena in conventional quantum models. For example, a convection flow loop is introduced into the well-known Bardeen-Cooper-Schrieffer fermion pairing model to form a vortex dimer state that offers an explanation of the pseudogap state of unconventional superconductors, and predicts a fractionally filled vortex dimer state. The integrally and fractionally quantized Hall conductance in the conventional quantum Hall system has an exact correspondence with the linking number in this multi-knot lattice model. The real-space knot pattern in the topological insulator model has an equivalent correspondence with the Lissajous knot in momentum space. The quantum phase transition between different quantum states of the quantum spin model is also directly quantified by the change of topological linking number, which revealed the topological character of phase transition. Circularized photons in an optical fiber network are a promising physical implementation of this multi-knot lattice, and provide a different path to topological quantum computation.

Keywords:  anyon      knot lattice      linking number      quantum Hall effect  
Received:  18 November 2018      Revised:  13 February 2019      Accepted manuscript online: 
PACS:  05.30.Pr (Fractional statistics systems)  
  73.43.-f (Quantum Hall effects)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  02.10.Kn (Knot theory)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11304062).

Corresponding Authors:  Tieyan Si     E-mail:  tieyansi@hit.edu.cn

Cite this article: 

Tieyan Si(司铁岩) Entangled multi-knot lattice model of anyon current 2019 Chin. Phys. B 28 040501

[1] Kitaev A Y 2003 Ann. Phys. 303 2
[2] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
[3] He J and Kou S P 2016 Chin. Phys. B 25 117310
[4] Moore G and Read N 1991 Nucl. Phys. B 360 362
[5] Wilczek F 1982 Phys. Rev. Lett. 49 957
[6] Camino F E, Zhou W and Goldman V J 2005 Phys. Rev. B 72 075342
[7] Wen X G 1991 Phys. Rev. Lett. 66 802
[8] Georgiev L S 2009 J. Phys. A: Math. Theor. 42 225203
[9] Stern A 2010 Nature 464 187
[10] Kitaev A 2006 Ann. Phys. 321 2
[11] Bombin H and Martin-Delgado M A 2008 Phys. Rev. A 77 042322
[12] Lang L J, Cai X M and Chen S 2012 Phys. Rev. Lett. 108 220401
[13] Hu H P, Cheng C, Luo H G and Chen S 2015 Sci. Rep. 5 8433
[14] Hu H P, Cheng C, Xu Z H, Luo H G and Chen S 2014 Phys. Rev. B 90 035150
[15] Hermanns M, Kimchi I and Knolle J 2018 Ann. Rev. Condens. Matter. Phys. 9 17
[16] Witten E 1989 Commun. Math. Phys. 121 351
[17] Duan Y S, Liu X and Fu L B 2003 Phys. Rev. D 67 085022
[18] Yang C N 1952 Phys. Rev. 85 808
[19] Wu F Y 1992 Rev. Mod. Phys. 64 1099
[20] Murthy G and Shankar R 2003 Rev. Mod. Phys. 75 1101
[21] Jain J K 1989 Phys. Rev. Lett. 63 199
[22] Pohl W 1968 J. Math. Mech. 17 975
[23] Zhang S C, Hansson T H and Kivelson S 1989 Phys. Rev. Lett. 62 82
[24] Qi X L, Hughes T and Zhang S C 2008 Phys. Rev. B 78 195424
[25] Soret M and Ville M 2015 arXiv: 1507.00880v1 [math.GT]
[26] Bogle M G V, Hearst J E, Jones V F R and Stoilov L 1994 J. Knot Theory and Ramilcations 3 121140
[27] Nash C and Sen S 1983 Topology and Geometry for Physicis (Academic Press)
[28] Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802
[29] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[30] Tsuei C C and Kirtley J R 2000 Rev. Mod. Phys. 72 969
[31] Duan Y S 1984 SLAC-PUB-3301
[32] Adams C 2001 The knot book, American Mathematical Society
[33] Kasteleyn P W 1963 J. Math. Phys. 4 287
[34] Fendley P, Moessner R and Sondhi S L 2002 Phys. Rev. B 66 214513
[35] Scalapino D J 2012 Rev. Mod. Phys. 84 1383
[36] Sachdev S 1999 Quantum phase transitions (Cambridge: Cambridge University Press)
[37] Zhang G and Song Z 2015 Phys. Rev. Lett. 115 177204
[38] Paddison J A M, Ong H S, Hamp J O, Mukherjee P, Bai X, Tucker M G, Butch N P, Castelnovo C, Mourigal M and Dutton S E 2016 Nat. Commun. 7 13842
[39] Feng X Y, Zhang G M and Xiang T 2007 Phys. Rev. Lett. 98 087204
[40] Chen H D and Nussinov Z 2008 J. Phys. A 41 075001
[41] Si T and Yu Y 2008 Nucl. Phys. B 803 428
[42] Si T 2012 arXiv: 1205.1052v4 [quant-ph]
[43] Yao H and Kivelson S A 2007 Phys. Rev. Lett. 99 247203
[44] Yang S, Zhou D L and Sun C P 2007 Phys. Rev. B 76 180404
[45] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[46] Yang S, Gu Z C, Sun K and Das Sarma S 2012 Phys. Rev. B 86 241112
[47] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[48] Yu H L, Zhai Z Y and Bian X T 2016 Chin. Phys. Lett. 33 117305
[49] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[50] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[51] Si T 2005 J. Math. Phys 46 122301
[52] Zhang S C and Hu J P 2001 Science 294 823
[53] Marino M 2005 Rev. Mod. Phys. 77 675
[54] Dilao R and Schiappa R 1997 Phys. Lett. B 404 57
[55] Babaev E 2002 Phys. Rev. Lett. 88 177002
[56] Faddeev L and Niemi A J 1997 Nature 387 58
[57] Si T 2005 JHEP 07 060
[58] Bliokh K Y, Niv A, Kleiner V and Hasman E 2008 Nature Photonics 2 748
[59] Xu H and Wan X 2008 Phys. Rev. A 78 042325
[60] Hu Z X, Bhatt R N, Wan X and Yang K 2011 Phys. Rev. Lett. 107 236806
[1] Generalization of the theory of three-dimensional quantum Hall effect of Fermi arcs in Weyl semimetal
Mingqi Chang(苌名起), Yunfeng Ge(葛云凤), and Li Sheng(盛利). Chin. Phys. B, 2022, 31(5): 057304.
[2] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[3] Integer quantum Hall effect in Kekulé-patterned graphene
Yawar Mohammadi and Samira Bahrami. Chin. Phys. B, 2022, 31(1): 017305.
[4] Simulation of anyons by cold atoms with induced electric dipole moment
Jian Jing(荆坚), Yao-Yao Ma(马瑶瑶), Qiu-Yue Zhang(张秋月), Qing Wang(王青), Shi-Hai Dong(董世海). Chin. Phys. B, 2020, 29(8): 080303.
[5] Magnetotransport properties of graphene layers decorated with colloid quantum dots
Ri-Jia Zhu(朱日佳), Yu-Qing Huang(黄雨青), Jia-Yu Li(李佳玉), Ning Kang(康宁), Hong-Qi Xu(徐洪起). Chin. Phys. B, 2019, 28(6): 067201.
[6] Coulomb-dominated oscillations in a graphene quantum Hall Fabry-Pérot interferometer
Guan-Qun Zhang(张冠群), Li Lin(林立), Hailin Peng(彭海琳), Zhongfan Liu(刘忠范), Ning Kang(康宁), Hong-Qi Xu(徐洪起). Chin. Phys. B, 2019, 28(12): 127203.
[7] Sub-millikelvin station at Synergetic Extreme Condition User Facility
Zhi Gang Cheng(程智刚), Jie Fan(樊洁), Xiunian Jing(景秀年), Li Lu(吕力). Chin. Phys. B, 2018, 27(7): 070702.
[8] Two-dimensional transport and strong spin-orbit interaction in SrMnSb2
Jiwei Ling(凌霁玮), Yanwen Liu(刘彦闻), Zhao Jin(金昭), Sha Huang(黄沙), Weiyi Wang(王伟懿), Cheng Zhang(张成), Xiang Yuan(袁翔), Shanshan Liu(刘姗姗), Enze Zhang(张恩泽), Ce Huang(黄策), Raman Sankar, Fang-Cheng Chou, Zhengcai Xia(夏正才), Faxian Xiu(修发贤). Chin. Phys. B, 2018, 27(1): 017504.
[9] From magnetically doped topological insulator to the quantum anomalous Hall effect
He Ke (何珂), Ma Xu-Cun (马旭村), Chen Xi (陈曦), Lü Li (吕力), Wang Ya-Yu (王亚愚), Xue Qi-Kun (薛其坤). Chin. Phys. B, 2013, 22(6): 067305.
[10] Graphene-like physics in optical lattices
Mei Feng (梅锋), Zhang Dan-Wei (张丹伟), Zhu Shi-Liang (朱诗亮). Chin. Phys. B, 2013, 22(11): 116106.
[11] Rotational symmetry of classical orbits, arbitrary quantization of angular momentum and the role of the gauge field in two-dimensional space
Xin Jun-Li(辛俊丽) and Liang Jiu-Qing(梁九卿) . Chin. Phys. B, 2012, 21(4): 040303.
[12] The quantum Hall's effect: A quantum electrodynamic phenomenon
A. I. Arbab. Chin. Phys. B, 2012, 21(12): 127301.
[13] The topological structure of the integral quantum Hall effect in magnetic semiconductor-superconductor hybrids
Ren Ji-Rong(任继荣) and Zhu Hui(朱辉). Chin. Phys. B, 2009, 18(6): 2535-2541.
[14] Composite particle and field theory in atomic quantum Hall effect
Zhao Bo (赵博), Chen Zeng-Bing (陈增兵). Chin. Phys. B, 2005, 14(2): 378-381.
No Suggested Reading articles found!