Special Issue:
SPECIAL TOPIC — Valleytronics
|
|
|
Large valley Nernst effect in twisted multilayer graphene systems |
Guanlin Jian(简冠林)1, Zhen-Gang Zhu(朱振刚)2,3,1,†, and Gang Su(苏刚)4,1,3,‡ |
1 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China; 4 Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Valley Nernst effect is a newly proposed and experimentally confirmed effect, which could be used to design novel thermoelectric devices. We study the valley Nernst effect in (M+N)-layer twisted multilayer graphene systems by a simple low-energy effective model. It is found that the total valley Nernst coefficient (VNC) is three orders of magnitude larger than that in monolayer group-VI dichalcogenides. The total VNC increases with the increase of layer numbers. It is shown that the total VNC exhibits a structure with three peaks as a function of the Fermi energy. We identify that the central peak is always negative stemming from the flat band. Two shoulder peaks are positively induced by the conduction and valence bands, respectively. These predicted features can be tested experimentally. The present work would shed more light on valley caloritronics.
|
Received: 15 October 2022
Revised: 25 January 2023
Accepted manuscript online: 20 February 2023
|
PACS:
|
71.28.+d
|
(Narrow-band systems; intermediate-valence solids)
|
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
Fund: Project supported in part by the National Key R&D Program of China (Grant No. 2018YFA0305800) and the National Natural Science Foundation of China (Grant Nos. 11974348 and 11834014). It is also supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB28000000 and XDB33000000). ZGZ is supported in part by the Training Program of Major Research plan of the National Natural Science Foundation of China (Grant No. 92165105) and CAS Project for Young Scientists in Basic Research (Grant No. YSBR-057). |
Corresponding Authors:
Zhen-Gang Zhu, Gang Su
E-mail: zgzhu@ucas.ac.cn;gsu@ucas.ac.cn
|
Cite this article:
Guanlin Jian(简冠林), Zhen-Gang Zhu(朱振刚), and Gang Su(苏刚) Large valley Nernst effect in twisted multilayer graphene systems 2023 Chin. Phys. B 32 107202
|
[1] Sakuraba Y, Hasegawa K, Mizuguchi M, Kubota T, Mizukami S, Miyazaki T and Takanashi K 2013 Appl. Phys. Express 6 033003 [2] Sakuraba Y 2016 Scripta Materialia 111 29 [3] Mizuguchi M and Nakatsuji S 2018 Sci. Tech. Adv. Mater. 20 262 [4] Mizuguchi M, Ohata S, Uchida K I, Saitoh E and Takanashi K 2012 Appl. Phys. Express 5 093002 [5] Yu X Q, Zhu Z G, Su G and Jauho A P 2015 Phys. Rev. Lett. 115 246601 [6] Dau M T, Vergnaud C, Marty A, Beigne C, Gambarelli S, Maurel V, Journot T, Hyot B, Guillet T, Grevin B, et al. 2019 Nat. Commun. 10 5796 [7] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 [8] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D 2019 Science 365 605 [9] Codecido E, Wang Q, Koester R, Che S, Tian H, Lv R, Tran S, Watanabe K, Taniguchi T, Zhang F, Bockrath M and Lau C N 2019 Sci. Adv. 5 eaaw9770 [10] Choi Y, Kemmer J, Peng Y, Thomson A, Arora H, Polski R, Zhang Y, Ren H, Alicea J, Refael G, von Oppen F, Watanabe K, Taniguchi T and Nadj-Perge S 2019 Nat. Phys. 15 1174 [11] Kerelsky A, McGilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A and Pasupathy A N 2019 Nature 572 95 [12] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [13] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F and Dean C R 2019 Science 363 1059 [14] dos Santos J M B L, Peres N M R and Neto A H C 2007 Phys. Rev. Lett. 99 256802 [15] Bistritzer R and MacDonald A H 2011 Proc. Natil. Acad. Sci. USA 108 12233 [16] Po H C, Zou L, Vishwanath A and Senthil T 2018 Phys. Rev. X 8 031089 [17] Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y and Wang F 2019 Nat. Phys. 15 237 [18] Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y and Wang F 2019 Nature 572 215 [19] Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y and Wang F 2020 Nature 579 56 [20] Zuo W J, Qiao J B, Ma D L, Yin L J, Sun G, Zhang J Y, Guan L Y and He L 2018 Phys. Rev. B 97 035440 [21] Zhu Z, Carr S, Massatt D, Luskin M and Kaxiras E 2020 Phys. Rev. Lett. 125 116404 [22] Chebrolu N R, Chittari B L and Jung J 2019 Phys. Rev. B 99 235417 [23] Lee J Y, Khalaf E, Liu S, Liu X, Hao Z, Kim P and Vishwanath A 2019 Nat. Commun. 10 5333 [24] Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P and Senthil T 2019 Phys. Rev. B 99 075127 [25] Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T and Jarillo-Herrero P 2020 Nature 583 215 [26] Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V and Zhang G 2020 Nat. Phys. 16 520 [27] Liu X, Hao Z, Khalaf E, Lee J Y, Ronen Y, Yoo H, Najafabadi D H, Watanabe K, Taniguchi T, Vishwanath A and Kim P 2020 Nature 583 221 [28] Vela A, Moutinho M V O, Culchac F J, Venezuela P and Capaz R B 2018 Phys. Rev. B 98 155135 [29] Liu J, Ma Z, Gao J and Dai X 2019 Phys. Rev. X 9 031021 [30] Liu X, Wang Z, Watanabe K, Taniguchi T, Vafek O and Li J 2021 Science 371 1261 [31] Jin C, Tao Z, Li T, Xu Y, Tang Y, Zhu J, Liu S, Watanabe K, Taniguchi T, Hone J C, Fu L, Shan J and Mak K F 2021 Nat. Mater. 20 940 [32] Chichinadze D V, Classen L and Chubukov A V 2020 Phys. Rev. B 101 224513 [33] Dodaro J F, Kivelson S A, Schattner Y, Sun X Q and Wang C 2018 Phys. Rev. B 98 075154 [34] Chichinadze D V, Classen L and Chubukov A V 2020 Phys. Rev. B 102 125120 [35] Cha P, Patel A A and Kim E A 2021 Phys. Rev. Lett. 127 266601 [36] Cao Y, Chowdhury D, Rodan-Legrain D, Rubies-Bigorda O, Watanabe K, Taniguchi T, Senthil T and Jarillo-Herrero P 2020 Phys. Rev. Lett. 124 076801 [37] Saito Y, Ge J, Rademaker L, Watanabe K, Taniguchi T, Abanin D A and Young A F 2021 Nat. Phys. 17 478 [38] Repellin C, Dong Z, Zhang Y H and Senthil T 2020 Phys. Rev. Lett. 124 187601 [39] Wu F and Sarma S D 2020 Phys. Rev. Lett. 124 046403 [40] Saito Y, Ge J, Rademaker L, Watanabe K, Taniguchi T, Abanin D A and Young A F 2021 Nat. Phys. 17 478 [41] Bultinck N, Chatterjee S and Zaletel M P 2020 Phys. Rev. Lett. 124 166601 [42] Zhang Z, Myers R, Watanabe K, Taniguchi T and LeRoy B J 2020 Phys. Rev. Research 2 033181 [43] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2019 Science 367 900 [44] Arora H S, Polski R, Zhang Y, Thomson A, Choi Y, Kim H, Lin Z, Wilson I Z, Xu X, Chu J H, Watanabe K, Taniguchi T, Alicea J and Nadj-Perge S 2020 Nature 583 379 [45] Stepanov P, Das I, Lu X, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H L, Lischner J, Levitov L and Efetov D K 2020 Nature 583 375 [46] Liu X, Wang Z, Watanabe K, Taniguchi T, Vafek O and Li J I A 2021 Science 371 1261 [47] Li Y and Koshino M 2019 Phys. Rev. B 99 075438 [48] Wang Z F, Liu F and Chou M Y 2012 Nano Lett. 12 3833 [49] Morell E S, Correa J D, Vargas P, Pacheco M and Barticevic Z 2010 Phys. Rev. B 82 121407 [50] Shallcross S, Sharma S, Kandelaki E and Pankratov O A 2010 Phys. Rev. B 81 165105 [51] Lin X and Tománek D 2018 Phys. Rev. B 98 081410 [52] Hejazi K, Chen X and Balents L 2021 Phys. Rev. Res. 3 013242 [53] Vafek O and Kang J 2021 Phys. Rev. B 104 075143 [54] Zou L, Po H C, Vishwanath A and Senthil T 2018 Phys. Rev. B 98 085435 [55] Yuan N F Q and Fu L 2018 Phys. Rev. B 98 045103 [56] Koshino M, Yuan N F, Koretsune T, Ochi M, Kuroki K and Fu L 2018 Phys. Rev. X 8 031087 [57] Kang J and Vafek O 2018 Phys. Rev. X 8 031088 [58] Po H C, Zou L, Senthil T and Vishwanath A 2019 Phys. Rev. B 99 195455 [59] Carr S, Fang S, Po H C, Vishwanath A and Kaxiras E 2019 Phys. Rev. Res. 1 033072 [60] Uchida K, Furuya S, Iwata J I and Oshiyama A 2014 Phys. Rev. B 90 155451 [61] Kang P, Zhang W T, Michaud-Rioux V, Kong X H, Hu C, Yu G H and Guo H 2017 Phys. Rev. B 96 195406 [62] Lucignano P, Alfé D, Cataudella V, Ninno D and Cantele G 2019 Phys. Rev. B 99 195419 [63] Bernevig B A, Song Z D, Regnault N and Lian B 2021 Phys. Rev. B 103 205413 [64] Mele E J 2011 Phys. Rev. B 84 235439 [65] Song Z, Wang Z, Shi W, Li G, Fang C and Bernevig B A 2019 Phys. Rev. Lett. 123 036401 [66] Tarnopolsky G, Kruchkov A J and Vishwanath A 2019 Phys. Rev. Lett. 122 106405 [67] Pal H K, Spitz S and Kindermann M 2019 Phys. Rev. Lett. 123 186402 [68] Liu J, Liu J and Dai X 2019 Phys. Rev. B 99 155415 [69] Lian B, Xie F and Bernevig B A 2020 Phys. Rev. B 102 041402 [70] Zhang Y H, Mao D and Senthil T 2019 Phys. Rev. Res. 1 033126 [71] Kang J, Bernevig B A and Vafek O 2021 Phys. Rev. Lett. 127 266402 [72] Zhang X, Pan G, Zhang Y, Kang J and Meng Z Y 2021 Chin. Phys. Lett. 38 077305 [73] Lian B, Song Z D, Regnault N, Efetov D K, Yazdani A and Bernevig B A 2021 Phys. Rev. B 103 205414 [74] Sboychakov A O, Rozhkov A V, Rakhmanov A L and Nori F 2019 Phys. Rev. B 100 045111 [75] Isobe H, Yuan N F and Fu L 2018 Phys. Rev. X 8 041041 [76] Xu X Y, Law K T and Lee P A 2018 Phys. Rev. B 98 121406 [77] Huang T, Zhang L and Ma T 2019 Science Bulletin 64 310 [78] Liu C C, Zhang L D, Chen W Q and Yang F 2018 Phys. Rev. Lett. 121 217001 [79] Rademaker L and Mellado P 2018 Phys. Rev. B 98 235158 [80] Venderbos J W F and Fernandes R M 2018 Phys. Rev. B 98 245103 [81] Kang J and Vafek O 2019 Phys. Rev. Lett. 122 246401 [82] Xie M and MacDonald A 2020 Phys. Rev. Lett. 124 097601 [83] Xu C and Balents L 2018 Phys. Rev. Lett. 121 087001 [84] Wu F, MacDonald A and Martin I 2018 Phys. Rev. Lett. 121 257001 [85] Lian B, Wang Z and Bernevig B A 2019 Phys. Rev. Lett. 122 257002 [86] Kozii V, Isobe H, Venderbos J W F and Fu L 2019 Phys. Rev. B 99 144507 [87] Wu F 2019 Phys. Rev. B 99 195114 [88] Roy B and Juričić V 2019 Phys. Rev. B 99 121407 [89] Liu J and Dai X 2021 Nat. Rev. Phys. 3 367 [90] Wu S, Zhang Z, Watanabe K, Taniguchi T and Andrei E Y 2021 Nat. Mater. 20 488 [91] Ahn J, Park S and Yang B J 2019 Phys. Rev. X 9 021013 [92] Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A 2020 Nature 588 610 [93] Uri A, Grover S, Cao Y, Crosse J A, Bagani K, Rodan-Legrain D, Myasoedov Y, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P and Zeldov E 2020 Nature 581 47 [94] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055 [95] Gunawan O, Shkolnikov Y P, Vakili K, Gokmen T, Poortere E P D and Shayegan M 2006 Phys. Rev. Lett. 97 186404 [96] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172 [97] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809 [98] Yao W, Xiao D and Niu Q 2008 Phys. Rev. B 77 235406 [99] Zhang F, Jung J, Fiete G A, Niu Q and MacDonald A H 2011 Phys. Rev. Lett. 106 156801 [100] Min H and MacDonald A H 2008 Progress of Theoretical Physics Supplement 176 227 [101] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539 [102] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 [103] Uchoa B, Kotov V N, Peres N and Neto A C 2008 Phys. Rev. Lett. 101 026805 [104] Zhu Z G and Berakdar J 2013 New J. Phys. 15 073028 [105] Li X, Wu F and MacDonald A H 2019 arXiv preprint arXiv:1907.12338 [106] Tritsaris G A, Carr S, Zhu Z, Xie Y, Torrisi S B, Tang J, Mattheakis M, Larson D T and Kaxiras E 2020 2D Mater. 7 035028 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|