Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 104210    DOI: 10.1088/1674-1056/accd54
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Design of a photonic crystal fiber polarization beam splitter with simple structure and ultra-wide bandwidth

Yun-Peng Wei(魏云鹏)1, Jin-Hui Yuan(苑金辉)1,2,†, Yu-Wei Qu(屈玉玮)1, Shi Qiu(邱石)1, Xian Zhou(周娴)2, Bin-Bin Yan(颜玢玢)1, Kui-Ru Wang(王葵如)1, Xin-Zhu Sang(桑新柱)1, and Chong-Xiu Yu(余重秀)1
1 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 Research Center for Convergence Networks and Ubiquitous Services, University of Science&Technology Beijing(USTB), Beijing 100083, China
Abstract  A novel polarization beam splitter (PBS) based on dual-core photonic crystal fiber (DC-PCF) is proposed in this work. The proposed DC-PCF PBS contains two kinds of lattices and three kinds of air holes to form the asymmetrical elliptic dual-core structure. By using the full-vector finite element method, the propagation characteristics of the proposed DC-PCF PBS are investigated. The simulation results show that the bandwidth of the proposed DC-PCF PBS can reach to 340 nm, which covers the S + C + L + U communication bands, the shortest splitting length is 1.97 mm, and the maximum extinction ratio appears near wavelength 1550 nm. Moreover, the insertion loss of the proposed DC-PCF PBS is very low. It is believed that the proposed DC-PCF PBS has important applications in the field of all-optical communication and network.
Keywords:  dual-core photonic crystal fiber      polarization beam splitter      extinction ratio      bandwidth  
Received:  08 January 2023      Revised:  13 April 2023      Accepted manuscript online:  17 April 2023
PACS:  42.81.Gs (Birefringence, polarization)  
  42.68.Ay (Propagation, transmission, attenuation, and radiative transfer)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.81.-i (Fiber optics)  
Fund: Project supported by the National Key Research and Development Project of China (Grant No. 2019YFB2204001).
Corresponding Authors:  Jin-Hui Yuan     E-mail:  yuanjinhui81@163.com

Cite this article: 

Yun-Peng Wei(魏云鹏), Jin-Hui Yuan(苑金辉), Yu-Wei Qu(屈玉玮), Shi Qiu(邱石), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀) Design of a photonic crystal fiber polarization beam splitter with simple structure and ultra-wide bandwidth 2023 Chin. Phys. B 32 104210

[1] Fang L and Wang J 2018 Opt. Express 26 15124
[2] Yu W, Yao P, Wang P and Ming H 2013 Optik 124 5489
[3] Sun Y, Zhang L, Xia H, Cao S, Wang L, Yang S, Wu Y and Tai R 2021 Optik 227 166096
[4] Dai H, Shang J and Chen X 2017 Opt. Eng. 56 077107
[5] Tang X, Liao J, Li H and Liu Y 2013 IEEE J. Quantum Electron. 49 43
[6] Li Y, Deng J, Yang Z, Zou H and Ma Y 2022 Chin. Phys. B 31 054215
[7] Tajima K, Zhou J, Nakajima K and Sato K 2004 Journal of Lightwave Technology 22 7
[8] Selvendran S, Divya J, Raja A S, Sivasubramanian A and Itapu S 2022 Micromachines 13 917
[9] Zheng Y Q, Liu J Q, Wang Y F, Liu H, Wang W and Xie X P 2022 Microwave and Optical Technology Letters 65 1277
[10] Knight J C 2003 Nature 424 847
[11] Russell P 2003 Science 299 358
[12] Bing P, Wu G, Liu Q, Li Z, Tan L, Zhang H and Yao J 2022 Chin. Phys. B 31 084208
[13] Huang Y, Yang H and Mao Y 2022 Chin. Phys. B 31 054211
[14] Zheng W, Ma Z, Kang L, Zhang M and Liu C 2022 Optik 271 170089
[15] Zou H, Xiong H, Zhang Y S, Ma Y and Zheng J J 2017 Chin. Phys. B 26 124216
[16] Zi J, Li S, An G and Fan Z 2016 Opt. Commun. 363 80
[17] Chu L, Liu M, Shum P and Fu Y 2019 Appl. Opt. 58 7892
[18] Zhang X, Liu Z, Gui Y, Gan H, Guan Y, He L, Wang X, Shen X and Dai S 2021 Opt. Express 29 39601
[19] Ren C, Yuan J, Wang K, Yan B, Sang X and Yu C 2021 Opt. Eng. 60 017102
[20] Zhang J X 2022 J. Nanophoton. 16 016005
[21] Zhao X T, Hua L, Xiong Q, Jiang G H and Cheng J R 2019 Opt. Quantum Electron. 51 162
[22] Zhang Y, Qu Y, Yuan J, Wang H, Zhou X, Huo J, Yan B, Wu Q, Wang K, Long K and Yu C 2021 Fiber and Integrated Optics 40 70
[23] Qu Y, Yuan J, Wang K, Qiu S, Zhou X, Yan B, Wu Q, Liu B, Wang K, Sang X, Long K and Yu C 2022 J. Opt. Soc. Am. B 39 1580
[24] Tong H T, Koumura A, Nakatani A, Nguyen H P T, Matsumoto M, Sakai G, Suzuki T and Ohishi Y 2022 Opt. Express 30 25433
[25] Mahfuz M A, Mollah Md A, Momota M R, Paul A K, Masud A, Akter S and Hasan Md R 2019 Opt. Mater. 90 315
[26] Tao Y, Ye H, Ding Y, Ren X and Liu X 2022 Photonic Sens 12 220309
[27] Malitson I H 1965 J. Opt. Soc. Am. 55 1205
[28] Di Bin P and Mothe N 2009 Opt. Express 17 15778
[29] Liu E, Liang S and Liu J 2019 Superlattices and Microstructures 130 61
[30] Zou H, Xiong H, Zhang Y S, Ma Y and Zheng J J 2017 Chin. Phys. B 26 124216
[31] Qu Y, Yuan J, Qiu S, Zhou X, Li F, Yan B, Wu Q, Wang K, Sang X, Long K and Yu C 2021 Sensors 21 496
[32] Rahman M T and Khaleque A 2019 Appl. Opt. 58 9426
[33] Qu Y, Han Y, Yuan J, Zhou X, Yan B, Wang K, Sang X and Yu C 2021 Photonics 8 461
[34] Zou H, Xiong H, Zhang Y S, Ma Y and Zheng J J 2017 Chin. Phys. B 26 124216
[35] Zhao T, Lou S, Wang X, Zhou M and Lian Z 2016 Appl. Opt. 55 6428
[36] He Y, Zhang Y, Zhang R, Sun L and Su Y 2021 Opt. Lett. 46 194
[37] Dou C, Jing X, Li S, Wu J and Wang Q 2018 Opt. Quantum Electron 50 255
[38] Wang H, Yan X, Li S, An G and Zhang X 2017 J. Mod. Opt. 64 445
[39] Rajeswari D, Sivanantha Raja A and Selvendran S 2017 Optik 144 15
[40] Chen M Y, Sun B, Zhang Y K and Fu X X 2010 Appl. Opt. 49 3042
[1] Planar InAlAs/InGaAs avalanche photodiode with 360 GHz gain×bandwidth product
Shuai Wang(王帅), Han Ye(叶焓), Li-Yan Geng(耿立妍), Fan Xiao(肖帆), Yi-Miao Chu(褚艺渺), Yu Zheng(郑煜), and Qin Han(韩勤). Chin. Phys. B, 2023, 32(9): 098507.
[2] Microwave absorption and bandwidth study of Y2Co17 rare earth soft magnetic alloy with easy-plane anisotropy
Yun-Guo Ma(马云国), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Hao Wang(王浩), Zhe Sun(孙哲), Cheng-Fa Tu(涂成发), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2023, 32(8): 084202.
[3] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[4] Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping
Da-Wei Li(李大为), Tao Wang(王韬), Xiao-Lei Yin(尹晓蕾), Li Wang(王利), Jia-Mei Li(李佳美),Hui Yu(余惠), Yong Cui(崔勇), Tian-Xiong Zhang(张天雄), Xing-Qiang Lu(卢兴强), and Guang Xu(徐光). Chin. Phys. B, 2022, 31(9): 094210.
[5] Switchable down-, up- and dual-chirped microwave waveform generation with improved time-bandwidth product based on polarization modulation and phase encoding
Yuxiao Guo(郭玉箫), Muguang Wang(王目光), Hongqian Mu(牟宏谦), and Guofang Fan(范国芳). Chin. Phys. B, 2022, 31(7): 078403.
[6] Numerical studies of atomic three-step photoionization processes with non-monochromatic laser fields
Xiao-Yong Lu(卢肖勇), Li-De Wang(王立德), and Yun-Fei Li(李云飞). Chin. Phys. B, 2022, 31(6): 063203.
[7] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[8] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[9] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[10] Random-injection-based two-channel chaos with enhanced bandwidth and suppressed time-delay signature by mutually coupled lasers: Proposal and numerical analysis
Shi-Rong Xu(许世蓉), Xin-Hong Jia (贾新鸿), Hui-Liang Ma(马辉亮), Jia-Bing Lin(林佳兵), Wen-Yan Liang(梁文燕), and Yu-Lian Yang(杨玉莲). Chin. Phys. B, 2021, 30(1): 014203.
[11] Quantum noise of a harmonic oscillator under classical feedback control
Feng Tang(汤丰), Nan Zhao(赵楠). Chin. Phys. B, 2020, 29(9): 090303.
[12] Design of diamond-shape photonic crystal fiber polarization filter based on surface plasma resonance effect
Yongxia Zhang(张永霞), Jinhui Yuan(苑金辉), Yuwei Qu(屈玉玮), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), Xinzhu Sang(桑新柱), Keping Long(隆克平), Chongxiu Yu(余重秀). Chin. Phys. B, 2020, 29(3): 034208.
[13] Effects of buried oxide layer on working speed of SiGe heterojunction photo-transistor
Xian-Cheng Liu(刘先程), Jia-Jun Ma(马佳俊), Hong-Yun Xie(谢红云), Pei Ma(马佩), Liang Chen(陈亮), Min Guo(郭敏), Wan-Rong Zhang(张万荣). Chin. Phys. B, 2020, 29(2): 028501.
[14] High-gain and low-distortion Brillouin amplification based on pump multi-frequency intensity modulation
Li-Wen Sheng(盛立文), De-Xin Ba(巴德欣), Zhi-Wei Lv(吕志伟). Chin. Phys. B, 2019, 28(2): 024212.
[15] Ultra-broadband polarization splitter based on graphene layer-filled dual-core photonic crystal fiber
Hui Zou(邹辉), Hui Xiong(熊慧), Yun-Shan Zhang(张云山), Yong Ma(马勇), Jia-Jin Zheng(郑加金). Chin. Phys. B, 2017, 26(12): 124216.
No Suggested Reading articles found!