Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 094204    DOI: 10.1088/1674-1056/acc8c1
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-speed directly modulated distributed feedback laser based on detuned loading and photon-photon resonance effect

Yun-Shan Zhang(张云山)1, Yi-Fan Xu(徐逸帆)1, Ji-Lin Zheng(郑吉林)2, Lian-Yan Li(李连艳)1, Tao Fang(方涛)3, and Xiang-Fei Chen(陈向飞)3,†
1 College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 College of Communications Engineering, PLA Army Engineering University, Nanjing 210007, China;
3 College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
Abstract  A monolithic integrated two-section distributed feedback (TS-DFB) semiconductor laser for high-speed direct modulation is proposed and analyzed theoretically. The grating structure of the TS-DFB laser is designed by the reconstruction-equivalent-chirp (REC) technique, which can reduce the manufacturing cost and difficulty, and achieve high wavelength controlling accuracy. The detuned loading effect and the photon-photon resonance (PPR) effect are utilized to enhance the modulation bandwidth of the TS-DFB laser, exceeding 37 GHz, while that of the conventional one-section DFB laser is only 16 GHz. When the bit rate of the non-return-to-zero (NRZ) signal reaches 55 Gb/s, a clear eye diagram with large opening can still be obtained. These results show that the proposed method can enhance the modulation bandwidth of DFB laser significantly.
Keywords:  directly modulated laser (DML)      detuned loading effect      photon-photon resonance (PPR) effect      reconstruction-equivalent-chirp (REC) technique  
Received:  30 December 2022      Revised:  17 March 2023      Accepted manuscript online:  30 March 2023
PACS:  42.55.-f (Lasers)  
  42.55.Px (Semiconductor lasers; laser diodes)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFB2205804), the National Natural Science Foundation of China (Grant Nos. 61974165 and Grant 61975075), and the National Natural Science Foundation of China for the Youth, China (Grant No. 62004105).
Corresponding Authors:  Xiang-Fei Chen     E-mail:  chenxf@nju.edu.cn

Cite this article: 

Yun-Shan Zhang(张云山), Yi-Fan Xu(徐逸帆), Ji-Lin Zheng(郑吉林), Lian-Yan Li(李连艳), Tao Fang(方涛), and Xiang-Fei Chen(陈向飞) High-speed directly modulated distributed feedback laser based on detuned loading and photon-photon resonance effect 2023 Chin. Phys. B 32 094204

[1] Zhao Q, Pan J Q, Zhou F, Wang B J, Wang L F and Wang W 2005 Chin. Phys. Lett. 22 2016
[2] Zhou D B, Wang H T, Zhang R K, Wang B J, Bian J, An X, Lu D, Zhao L J, Zhu H L, Ji C and Wang W 2015 Chin. Phys. Lett. 32 054205
[3] Ishikawa T, Higashi T, Uchida T, Fujii T, Yamamoto T, Shoji H and Kobayashi M 1998 International Conference on Indium Phosphide and Related Materials, May 11-15, 1998, Tsukuba, Japan, p. 729
[4] Nakahara K, Wakayama Y, Kitatani T, Taniguchi T, Fukamachi T, Sakuma Y and Tanaka S 2015 IEEE Photon. Technol. Lett. 27 534
[5] Otsubo K, Matsuda M, Takada K, Okumura S, Ekawa M, Tanaka H, Ide S, Mori K and Yamamoto T 2009 IEEE J. Sel. Top. Quantum Electron. 15 687
[6] Kobayashi W, Tadokoro T, Ito T, Fujisawa T, Yamanaka T, Shibata Y and Kohtoku M 2012 International Semiconductor Laser Conference, October 7-10, 2012, San Diego, CA, USA, p. 50
[7] Sakaino G, Takiguchi T, Sakuma H, Watatani C, Nagira T, Suzuki D, Aoyagi T and Ishikawa T 2010 22nd IEEE International Semiconductor Laser Conference, September 26-30, 2010, Kyoto, Japan, p. 197
[8] Tadokoro T, Kobayashi W, Fujisawa T, Yamanaka T and Kano F 2012 J. Lightwave Technol. 30 2520
[9] Uetake A, Otsubo K, Matsuda M, Okumura S, Ekawa M and Yamamoto T 2009 IEEE LEOS Annual Meeting Conference Proceedings, October 4-8, 2009, Belek-Antalya, Turkey, p. 839
[10] Vahala K and Yariv A 1984 Appl. Phys. Lett. 45 501
[11] Chacinski M, Schatz R and Kjebon O 2004 Proceedings of 2004$ International Students and Young Scientists workshop Photonics and Microsystems, September 8-10, 2004, Acapulco, Mexico, p. 1
[12] Kjebon O, Schatz R, Lourdudoss S, Nilsson S, Stålnacke B and Bäckbom L 1997 Electron. Lett. 33 488
[13] Matsui Y, Schatz R, Che D, Khan F, Kwakernaak M and Sudo T 2021 Nat. Photon. 15 59
[14] Kreissl J, Vercesi V, Troppenz U, Gaertner T, Wenisch W and Schell M 2012 IEEE Photon. Technol. Lett. 24 362
[15] Feiste U 1998 IEEE J. Quantum Electron. 34 2371
[16] Morthier G, Schatz R and Kjebon O 2000 IEEE J. Quantum Electron. 36 1468
[17] Kjebon O, Schatz R, Lourdudoss S, Nilsson S, Stalnacke B and Backbom L 1997 International Conference on Indium Phosphide and Related Materials, May 11-15, 1997, Cape Cod, MA, USA, p. 665
[18] Matsui Y, Pham T, Ling W A, Schatz R, Carey G, Daghighian H, Sudo T and Roxlo C 2016 Optical Fiber Communications Conference and Exhibition, March 20-24, 2016, Anaheim, CA, USA, p. 1
[19] Matsui Y, Schatz R, Pham T, Ling W A, Carey G, Daghighian H M, Adams D, Sudo T and Roxlo C 2017 J. Lightwave Technol. 35 397
[20] Zhang Y S, Zheng J L, Shi Y C, Qian Y J, Zheng J S, Zhang F Z, Wang P, Qiu B C, Lu J, Wang W X and Chen X F 2015 IEEE J. Sel. Top. Quantum Electron. 21 232
[21] Yuan B C, Shi J Q, Qi W X, Li L Y, Zheng J L, Xiao R L, Shi Y C, Chen X F, Xu N and Zhang Y S 2020 IEEE Photon. J. 12 1
[22] Guan S J, Zhang Y S, Yuan B C, Li L Y, Wang C S, Zheng J L, Fang T, Shi Y C, and Xiao R L and Chen X F 2021 J. Lightwave Technol. 39 4725
[23] Dai Y T, Chen X F, Xia L, Zhang Y J and Xie S Z 2004 Opt. Lett. 29 1333
[24] Dai Y T and Yao J P 2008 IEEE J. Quantum Electron. 44 938
[25] Zhang L M, Yu S F, Nowell M C, Marcenac D D, Carroll J E and Plumb R G S 1994 IEEE J. Quantum Electron. 30 1389
[26] Kim B S, Kim J K, Chung Y and Kim S H 1998 IEEE Photon. Technol. Lett. 10 39
[27] Wang H, Zhu H L, Jia L H, Chen X F, Li J S and Wang W 2008 Chin. Phys. Lett. 25 4162
[28] Wang H, Zhu H L, Jia L H, Chen X F, Kong D H, Wang L S, Zhang W, Zhao L J and Wang W 2009 Chin. Phys. B 18 2868
[29] Morrison G B and Cassidy D T 2000 IEEE J. Quantum Electron. 36 633
[1] High-power xenon lamp-pumped Er:YAP pulse laser operated in free-running and acousto-optical Q-switching modes
Cong Quan(权聪), Dunlu Sun(孙敦陆), Huili Zhang(张会丽), Jianqiao Luo(罗建乔), Zhiyuan Han(韩志远), Yang Qiao(乔阳), Yuwei Chen(陈玙威), Zhentao Wang(王镇涛), Maojie Cheng(程毛杰), and Qingli Zhang(张庆礼). Chin. Phys. B, 2023, 32(11): 114207.
[2] Energy conversion materials for the space solar power station
Xiao-Na Ren(任晓娜), Chang-Chun Ge(葛昌纯), Zhi-Pei Chen(陈志培), Irfan(伊凡), Yongguang Tu(涂用广), Ying-Chun Zhang(张迎春), Li Wang(王立), Zi-Li Liu(刘自立), and Yi-Qiu Guan(关怡秋). Chin. Phys. B, 2023, 32(7): 078802.
[3] Single-frequency linearly polarized Q-switched fiber laser based on Nb2GeTe4 saturable absorber
Si-Yu Chen(陈思雨), Hai-Qin Deng(邓海芹), Wan-Ru Zhang(张万儒), Yong-Ping Dai(戴永平), Tao Wang(王涛), Qiang Yu(俞强), Can Li(李灿), Man Jiang(姜曼), Rong-Tao Su(粟荣涛), Jian Wu(吴坚), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(7): 074203.
[4] A 54-fs diode-pumped Kerr-lens mode-locked Yb:LuYSiO5laser
Yang Yu(于洋), Yuehang Chen(陈月航), Wenlong Tian(田文龙), Li Zheng(郑立), Geyang Wang(王阁阳), Chuan Bai(白川), Xuan Tian(田轩), Haijing Mai(麦海静), Yulong Su(苏玉龙), Jiangfeng Zhu(朱江峰), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(6): 064204.
[5] Optically pumped wavelength-tunable lasing from a GaN beam cavity with an integrated Joule heater pivoted on Si
Feifei Qin(秦飞飞), Yang Sun(孙阳), Ying Yang(杨颖), Xin Li(李欣), Xu Wang(王旭), Junfeng Lu(卢俊峰), Yongjin Wang(王永进), and Gangyi Zhu(朱刚毅). Chin. Phys. B, 2023, 32(5): 054210.
[6] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[7] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[8] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[9] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[10] Watt-level, green-pumped optical parametric oscillator based on periodically poled potassium titanyl phosphate with high extraction efficiency
Hang-Hang Yu(俞航航), Zhi-Tao Zhang(张志韬), and Hong-Wen Xuan(玄洪文). Chin. Phys. B, 2022, 31(12): 124203.
[11] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[12] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[13] A 37 mJ, 100 Hz, high energy single frequency oscillator
Yu Shen(申玉), Yong Bo(薄勇), Nan Zong(宗楠), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), and Zuyan Xu(许祖彦). Chin. Phys. B, 2021, 30(8): 084208.
[14] Multiple scattering and modeling of laser in fog
Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
[15] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
No Suggested Reading articles found!