Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 094205    DOI: 10.1088/1674-1056/acd62a
INSTRUMENTATION AND MEASUREMENT Prev   Next  

An injection-locking diode laser at 671 nm with a wide tuning range up to 6 GHz

Hong-Fang Song(宋红芳)1,2, Yue Shen(沈玥)1, and Ke Li(李可)1,2,†
1 School of Science, Huzhou University, Huzhou 313000, China;
2 Strong-coupling Physics International Research Laboratory, Huzhou University, Huzhou 313000, China
Abstract  We present a compact injection-locking diode laser module to generate 671 nm laser light with a high output power up to 150 mW. The module adopts a master-slave injection-locking scheme, and the injection-locking state is monitored using the transmission spectrum from a Fabry-Pérot interferometer. Beat frequency spectrum measurement shows that the injection-locked slave laser has no other frequency components within the 150-MHz detection bandwidth. It is found that without additional electronic feedback, the slave laser can follow the master laser over a wide range of 6 GHz. All the elements of the module are commercially available, which favors fast construction of a complete 671-nm laser system for the preparation of cold 6Li atoms with only one research-grade diode laser as the seeding source.
Keywords:  injection lock      diode laser      6Li atoms  
Received:  07 January 2023      Revised:  08 April 2023      Accepted manuscript online:  17 May 2023
PACS:  42.55.Xi (Diode-pumped lasers)  
  42.60.Fc (Modulation, tuning, and mode locking)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12035006, 12205095, and 12147219) and the Natural Science Foundation of Zhejiang Province (Grant No. LQ21A040001).
Corresponding Authors:  Ke Li     E-mail:  02539@zjhu.edu.cn

Cite this article: 

Hong-Fang Song(宋红芳), Yue Shen(沈玥), and Ke Li(李可) An injection-locking diode laser at 671 nm with a wide tuning range up to 6 GHz 2023 Chin. Phys. B 32 094205

[1] Oskay W H, Diddams S A, Donley E A, Fortier T M, Heavner T P, Hollberg L, Itano W M, Jefferts S R, Delaney M J, Kim K, Levi F, Parker T E and Bergquist J C 2006 Phys. Rev. Lett. 97 020801
[2] Dai S Y, Zheng F S, Liu K, Chen W L, Lin Y G, Li T C and Fang F 2021 Chin. Phys. B 30 013701
[3] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[4] Poli N, Wang F Y, Tarallo M G, Alberti A, Prevedelli M and Tino G M 2011 Phys. Rev. Lett. 106 038501
[5] Wolf P, Chapelet F, Bize S and Clairon A 2006 Phys. Rev. Lett. 96 060801
[6] Stannigel K, Hauke P, Marcos D, Hafezi M, Diehl S, Dalmonte M and Zoller P 2014 Phys. Rev. Lett. 112 120406
[7] Yang C W, Yu Y, Li J, Jing B, Bao X H and Pan J W 2022 Nature Photonics 16 658
[8] Stoof H T C, Houbiers M, Sackett C A and Hulet R G 1996 Phys. Rev. Lett. 76 10
[9] Deng S, Diao P, Li F, Yu Q, Yu S and Wu H 2018 Phys. Rev. Lett 120 125301
[10] Weiss D S, Riis E, Shevy Y, Ungar P J and Chu S 1989 J. Opt. Soc. Am. B 6 2072
[11] Firmino M E, Faria Leite C A, Zilio S C and Bagnato V S 1990 Phys. Rev. A 41 4070
[12] Zhang X H and Xu X Y 2017 Chin. Phys. B 26 053701
[13] Xu L, Wei B, Xia Y, Deng L Z and Yin J P 2017 Chin. Phys. B 26 033702
[14] Yan X C, Sun D L, Wang L, Min J, Peng S G and Jiang K J 2021 Chin. Phys. Lett. 38 056701
[15] Deng S J, Diao P P, Yu Q L and Wu H B 2015 Chin. Phys. Lett. 32 053401
[16] Miake Y, Mukaiyama T, O'Hara K M and Gensemer S 2015 Rev. Sci. Instrum. 86 043113
[17] Adler R 1946 Proceedings of the IRE 34 351
[18] Adler R 1973 Proceedings of the IEEE 61 1380
[19] Razavi B 2004 IEEE J. Solid-St Circ. 39 1415
[20] Stover H and Steier W 1966 Appl. Phys. Lett. 8 91
[21] Kobayashi S and Kimura T 1981 IEEE J. Quantum Electron 17 681
[22] Shaffer M K, Ranjit G and Sukenik C I 2008 Rev. Sci. Instrum. 79 046102
[23] Saxberg B, Plotkin-Swing B and Gupta S 2016 Rev. Sci. Instrum. 87 063109
[24] Pagett C J H, Moriya P H, Celistrino Teixeira R, Shiozaki R F, Hemmerling M and Courteille Ph W 2016 Rev. Sci. Instrum. 87 053105
[25] Liu C, Jin H, Liu H and Bai J 2022 Chin. Phys. B 31 084205
[26] Burchianti A, Valtolina G, Seman J A, Pace E, De Pas M, Inguscio M, Zaccanti M and Roati G 2014 Phys. Rev. A 90 043408
[27] Vitanov N V, Shore B W, Yatsenko L, Böhmer K, Halfmann T, Rickes T and Bergmann K 2001 Opt. Commun. 199 117
[28] Lindquist K, Stephens M and Wieman C 1992 Phys. Rev. A 46 4082
[29] Duarte P M, Hart R A, Hitchcock J M, Corcovilos T A, Yang T L, Reed A and Hulet R G 2011 Phys. Rev. A 84 061406(R)
[1] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[2] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[3] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[4] Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing
Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君). Chin. Phys. B, 2021, 30(4): 044210.
[5] High-performance frequency stabilization of ultraviolet diode lasers by using dichroic atomic vapor spectroscopy and transfer cavity
Danna Shen(申丹娜), Liangyu Ding(丁亮宇), Qiuxin Zhang(张球新), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Wei Zhang(张威), Xiang Zhang(张翔). Chin. Phys. B, 2020, 29(7): 074210.
[6] Design of NO2 photoacoustic sensor with high reflective mirror based on low power blue diode laser
Hua-Wei Jin(靳华伟), Pin-Hua Xie(谢品华), Ren-Zhi Hu(胡仁志), Chong-Chong Huang(黄崇崇), Chuan Lin(林川), Feng-Yang Wang(王凤阳). Chin. Phys. B, 2020, 29(6): 060701.
[7] Theoretical and experimental study on frequency pushing effect of magnetron
Kang Li(李慷), Yi Zhang(张益), Hua-Cheng Zhu(朱铧丞), Ka-Ma Huang(黄卡玛), Yang Yang(杨阳). Chin. Phys. B, 2019, 28(11): 118402.
[8] Laser absorption spectroscopy for high temperature H2O time-history measurement at 2.55 μm during oxidation of hydrogen
Yu-Dan Gou(苟于单), De-Xiang Zhang(张德翔), Yi-Jun Wang(王易君), Chang-Hua Zhang(张昌华), Ping Li(李萍), Xiang-Yuan Li(李象远). Chin. Phys. B, 2018, 27(7): 074213.
[9] Measurements of argon metastable density using the tunable diode laser absorption spectroscopy in Ar and Ar/O2
Dao-Man Han(韩道满), Yong-Xin Liu(刘永新), Fei Gao(高飞), Wen-Yao Liu(刘文耀), Jun Xu(徐军), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(6): 065202.
[10] Broad bandwidth interference filter-stabilized external cavity diode laser with narrow linewidth below 100 kHz
Guan-Zhong Pan(潘冠中), Bao-Lu Guan(关宝璐), Chen Xu(徐晨), Peng-Tao Li(李鹏涛), Jia-Wei Yang(杨嘉炜), Zhen-Yang Liu(刘振杨). Chin. Phys. B, 2018, 27(1): 014204.
[11] Diode laser using narrow bandwidth interference filter at 852 nm and its application in Faraday anomalous dispersion optical filter
Zhaojie Jiang(蒋招杰), Qi Zhou(周琦), Zhiming Tao(陶智明), Xiaogang Zhang(张晓刚), Shengnan Zhang(张盛楠), Chuanwen Zhu(祝传文), Pingwei Lin(林平卫), Jingbiao Chen(陈景标). Chin. Phys. B, 2016, 25(8): 083201.
[12] Modeling and experimental studies of a side band power re-injection locked magnetron
Wen-Jun Ye(叶文军), Yi Zhang(张益), Ping Yuan(袁萍), Hua-Cheng Zhu(朱铧丞), Ka-Ma Huang(黄卡玛), Yang Yang(杨阳). Chin. Phys. B, 2016, 25(12): 128402.
[13] Sensitive absorption measurements of hydrogen sulfide at 1.578 μm using wavelength modulation spectroscopy
Xia Hua (夏滑), Dong Feng-Zhong (董凤忠), Wu Bian (吴边), Zhang Zhi-Rong (张志荣), Pang Tao (庞涛), Sun Peng-Shuai (孙鹏帅), Cui Xiao-Juan (崔小娟), Han Luo (韩荦), Wang Yu (王煜). Chin. Phys. B, 2015, 24(3): 034204.
[14] Arbitrary frequency stabilization of a diode laser based on visual Labview PID VI and sound card output
Feng Guo-Sheng (冯国胜), Wu Ji-Zhou (武寄洲), Wang Xiao-Feng (王晓锋), Zheng Ning-Xuan (郑宁宣), Li Yu-Qing (李玉清), Ma Jie (马杰), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2015, 24(10): 104211.
[15] Laser frequency stabilization and shifting by usingmodulation transfer spectroscopy
Cheng Bing (程冰), Wang Zhao-Ying (王兆英), Wu Bin (吴彬), Xu Ao-Peng (许翱鹏), Wang Qi-Yu (王启宇), Xu Yun-Fei (徐云飞), Lin Qiang (林强). Chin. Phys. B, 2014, 23(10): 104222.
No Suggested Reading articles found!