INSTRUMENTATION AND MEASUREMENT |
Prev
Next
|
|
|
An injection-locking diode laser at 671 nm with a wide tuning range up to 6 GHz |
Hong-Fang Song(宋红芳)1,2, Yue Shen(沈玥)1, and Ke Li(李可)1,2,† |
1 School of Science, Huzhou University, Huzhou 313000, China; 2 Strong-coupling Physics International Research Laboratory, Huzhou University, Huzhou 313000, China |
|
|
Abstract We present a compact injection-locking diode laser module to generate 671 nm laser light with a high output power up to 150 mW. The module adopts a master-slave injection-locking scheme, and the injection-locking state is monitored using the transmission spectrum from a Fabry-Pérot interferometer. Beat frequency spectrum measurement shows that the injection-locked slave laser has no other frequency components within the 150-MHz detection bandwidth. It is found that without additional electronic feedback, the slave laser can follow the master laser over a wide range of 6 GHz. All the elements of the module are commercially available, which favors fast construction of a complete 671-nm laser system for the preparation of cold 6Li atoms with only one research-grade diode laser as the seeding source.
|
Received: 07 January 2023
Revised: 08 April 2023
Accepted manuscript online: 17 May 2023
|
PACS:
|
42.55.Xi
|
(Diode-pumped lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12035006, 12205095, and 12147219) and the Natural Science Foundation of Zhejiang Province (Grant No. LQ21A040001). |
Corresponding Authors:
Ke Li
E-mail: 02539@zjhu.edu.cn
|
Cite this article:
Hong-Fang Song(宋红芳), Yue Shen(沈玥), and Ke Li(李可) An injection-locking diode laser at 671 nm with a wide tuning range up to 6 GHz 2023 Chin. Phys. B 32 094205
|
[1] Oskay W H, Diddams S A, Donley E A, Fortier T M, Heavner T P, Hollberg L, Itano W M, Jefferts S R, Delaney M J, Kim K, Levi F, Parker T E and Bergquist J C 2006 Phys. Rev. Lett. 97 020801 [2] Dai S Y, Zheng F S, Liu K, Chen W L, Lin Y G, Li T C and Fang F 2021 Chin. Phys. B 30 013701 [3] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621 [4] Poli N, Wang F Y, Tarallo M G, Alberti A, Prevedelli M and Tino G M 2011 Phys. Rev. Lett. 106 038501 [5] Wolf P, Chapelet F, Bize S and Clairon A 2006 Phys. Rev. Lett. 96 060801 [6] Stannigel K, Hauke P, Marcos D, Hafezi M, Diehl S, Dalmonte M and Zoller P 2014 Phys. Rev. Lett. 112 120406 [7] Yang C W, Yu Y, Li J, Jing B, Bao X H and Pan J W 2022 Nature Photonics 16 658 [8] Stoof H T C, Houbiers M, Sackett C A and Hulet R G 1996 Phys. Rev. Lett. 76 10 [9] Deng S, Diao P, Li F, Yu Q, Yu S and Wu H 2018 Phys. Rev. Lett 120 125301 [10] Weiss D S, Riis E, Shevy Y, Ungar P J and Chu S 1989 J. Opt. Soc. Am. B 6 2072 [11] Firmino M E, Faria Leite C A, Zilio S C and Bagnato V S 1990 Phys. Rev. A 41 4070 [12] Zhang X H and Xu X Y 2017 Chin. Phys. B 26 053701 [13] Xu L, Wei B, Xia Y, Deng L Z and Yin J P 2017 Chin. Phys. B 26 033702 [14] Yan X C, Sun D L, Wang L, Min J, Peng S G and Jiang K J 2021 Chin. Phys. Lett. 38 056701 [15] Deng S J, Diao P P, Yu Q L and Wu H B 2015 Chin. Phys. Lett. 32 053401 [16] Miake Y, Mukaiyama T, O'Hara K M and Gensemer S 2015 Rev. Sci. Instrum. 86 043113 [17] Adler R 1946 Proceedings of the IRE 34 351 [18] Adler R 1973 Proceedings of the IEEE 61 1380 [19] Razavi B 2004 IEEE J. Solid-St Circ. 39 1415 [20] Stover H and Steier W 1966 Appl. Phys. Lett. 8 91 [21] Kobayashi S and Kimura T 1981 IEEE J. Quantum Electron 17 681 [22] Shaffer M K, Ranjit G and Sukenik C I 2008 Rev. Sci. Instrum. 79 046102 [23] Saxberg B, Plotkin-Swing B and Gupta S 2016 Rev. Sci. Instrum. 87 063109 [24] Pagett C J H, Moriya P H, Celistrino Teixeira R, Shiozaki R F, Hemmerling M and Courteille Ph W 2016 Rev. Sci. Instrum. 87 053105 [25] Liu C, Jin H, Liu H and Bai J 2022 Chin. Phys. B 31 084205 [26] Burchianti A, Valtolina G, Seman J A, Pace E, De Pas M, Inguscio M, Zaccanti M and Roati G 2014 Phys. Rev. A 90 043408 [27] Vitanov N V, Shore B W, Yatsenko L, Böhmer K, Halfmann T, Rickes T and Bergmann K 2001 Opt. Commun. 199 117 [28] Lindquist K, Stephens M and Wieman C 1992 Phys. Rev. A 46 4082 [29] Duarte P M, Hart R A, Hitchcock J M, Corcovilos T A, Yang T L, Reed A and Hulet R G 2011 Phys. Rev. A 84 061406(R) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|