Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 090502    DOI: 10.1088/1674-1056/acd7d3
GENERAL Prev   Next  

Bifurcations for counterintuitive post-inhibitory rebound spike related to absence epilepsy and Parkinson disease

Xian-Jun Wang(王宪军)1, Hua-Guang Gu(古华光)2,†, Yan-Bing Jia(贾雁兵)3, Bo Lu(陆博)1, and Hui Zhou(周辉)1
1 School of Mathematics and Science, Henan Institute of Science and Technology, Xinxiang 453003, China;
2 School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China;
3 School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471000, China
Abstract  Seizures are caused by increased neuronal firing activity resulting from reduced inhibitory effect and enhancement of inhibitory modulation to suppress this activity is used as a therapeutic tool. However, recent experiments have shown a counterintuitive phenomenon that inhibitory modulation does not suppress but elicit post-inhibitory rebound (PIR) spike along with seizure to challenge the therapeutic tool. The nonlinear mechanism to avoid the PIR spike can present theoretical guidance to seizure treatment. This paper focuses on identifying credible bifurcations that underlie PIR spike by modulating multiple parameters in multiple theoretical models. The study identifies a codimension-2 bifurcation called saddle-node homoclinic orbit (SNHOB), which is an intersection between saddle node bifurcation on invariant cycle (SNIC) and other two bifurcations. PIR spike cannot be evoked for the SNIC far from the SNHOB but induced for the SNIC close to the SNHOB, which extends the bifurcation condition for PIR spike from the well-known Hopf to SNIC. Especially, in a thalamic neuron model, increases of conductance of T-type Ca2+ (TCa) channel induce SNIC bifurcation approaching to the SNHOB to elicit PIR spikes, closely matching experimental results of the absence seizure or Parkinson diseases. Such results imply that, when inhibition is employed to relieve absence seizure and Parkinson diseases related to PIR spike, modulating SNIC to get far from the SNHOB to avoid PIR spike is the principle. The study also addresses the complex roles of TCa current and comprehensive relationships between PIR spike and nonlinear conceptions such as bifurcation types and shapes of threshold curve.
Keywords:  bifurcation      threshold      post-inhibitory rebound spike      brain disease  
Received:  01 April 2023      Revised:  25 April 2023      Accepted manuscript online:  23 May 2023
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  87.19.lg (Synapses: chemical and electrical (gap junctions))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12072236, 11872276, and 11802086), the Postdoctoral Research Project of Henan Province, China (Grant No. 19030095), and the Science and Technology Development Program of Henan Province, China (Grant No. 212102210543).
Corresponding Authors:  Hua-Guang Gu     E-mail:  guhuaguang@tongji.edu.cn

Cite this article: 

Xian-Jun Wang(王宪军), Hua-Guang Gu(古华光), Yan-Bing Jia(贾雁兵), Bo Lu(陆博), and Hui Zhou(周辉) Bifurcations for counterintuitive post-inhibitory rebound spike related to absence epilepsy and Parkinson disease 2023 Chin. Phys. B 32 090502

[1] Izhikevich E M 2000 Int. J. Bifurcation Chaos 10 1171
[2] Yan B, Panahi S, He S, et al. 2020 Nonlinear Dyn. 101 521
[3] Yilmaz E, Ozer M, Baysal V, et al. 2020 Sci. Rep. 6 30914
[4] Ma J 2023 J. Zhejiang Univ. Sci. A 24 109
[5] Cao B, Gu H G and Li Y Y 2021 Chin. Phys. B 30 050502
[6] Liu Y R and Liu S Q 2020 Nonlinear Dyn. 101 531
[7] Wang J J, Yang Y, Gao Z W, et al. 2020 Chin. Phys. B 29 058701
[8] Xu Y, Liu M H, Zhu Z G and Ma J 2020 Chin. Phys. B 29 98704
[9] Valenti O, Cifelli P, Gill K M, et al. 2011 J. Neurosci. 31 12330
[10] Badimon A, Strasburger H J, Ayata P, et al. 2020 Nature 586 417
[11] Hesse J, Schleimer J H, Maier N, et al. 2022 Nat. Commun. 13 3934
[12] Tang X, Jaenisch R and Sur M 2021 Nat. Rev. Neurosci. 22 290
[13] Arinyo-I-Prats A, Moreno-Spiegelberg P, Matias M A, et al. 2021 Phys. Rev. E 104 L052203
[14] Fan D G, Zheng Y H, Yang Z C, et al. 2020 Appl. Math. Mech. Engl. Ed. 41 1287
[15] Du M M, Li J J, Chen L, et al. 2018 PLoS Comput. Biol. 14 e1005877
[16] Kim J, Kim Y, Nakajima R, et al. 2017 Neuron 95 1181
[17] Park C, Rubchinsky L L and Ahn R 2021 Chaos 31 113121
[18] Wang X J, Gu H G and Lu B 2021 ERA 29 2987
[19] Li L, Zhao Z G and Gu H G 2022 Chin. Phys. B 31 070506
[20] Lu A C, Lee C K, Kleiman-Weiner M, et al. 2020 eLife 9 e59548
[21] Ferrante M, Shay C F, Tsuno Y, et al. 2017 Cerebral Cortex 27 2111
[22] Guan L N, Jia B and Gu H G 2019 Internat. J. Bifur. Chaos 29 1950198
[23] Goaillard J, Taylor A, Pulver S, et al. 2010 J. Neurosci. 30 4687
[24] Felix A, Fridberger A, Leijon S, et al. 2011 J. Neurosci. 31 12566
[25] Villalobos C A and Basso M A 2022 Cell Reports 39 110699
[26] Nejad M M, Rotter S and Schmidt R 2021 Eur. J. Neurosci. 54 4295
[27] Yang Y, Cui Y, Sang K, et al. 2018 Nature 554 317
[28] Howe W M and Kenny P J 2018 Nature 554 304
[29] Kim D, Song I, Keum S, et al. 2001 Neuron 31 35
[30] Sessolo M, IMarcon I, Bovetti S, et al. 2015 J. Neurosci. 35 9544
[31] Chang M, Dian J A, Dufour S, et al. 2018 Neurobiology of Disease 109 102
[32] Cheong E, Zheng Y, Lee K, et al. 2009 PNAS 106 21912
[33] Ellender T J, Raimondo J V, Irkle A, et al. 2014 J. Neurosci. 34 15208
[34] de Curtis M and Avanzini G 2001 Prog. Neurobiol. 63 541
[35] Cammarota M, Losi G, Chiavegato A, et al. 2013 J. Physiol. 591 807
[36] Schevon C, Weiss S, McKhann G, et al. 2012 Nat Commun. 3 1060
[37] Ledri M, Madsen M G, Nikitidou L, et al. 2014 J. Neurosci. 34 3364
[38] Zhao J Y, Yu Y and Wang Q Y 2022 Chaos, Solitons and Fractals 164 112720
[39] Tikidji-Hamburyan R A, Martinez J J, White J A, et al. 2015 J. Neurosci. 35 15262
[40] Li Y Y, Gu H G, Jia B, et al. 2021 Sci. China Technol. Sci. 64 1459
[41] Lu B, Gu H G, Wang X J, et al. 2021 Chaos, Solitons and Fractals 145 110817
[42] Yang Y X, Gu H G, Li Y Y, et al. 2023 Nonlinear Dyn. 111 7751
[43] Wu F Q, Gu H G and Li Y Y 2019 Commun. Nonlinear Sci. Numer. Simul. 79 104924
[44] Yao C G, He Z W, Nakano T, et al. 2019 Nonlinear Dyn. 97 1425
[45] Ding X L, Jia B and Li Y Y 2019 Acta Phys. Sin. 68 180502 (in Chinese)
[46] Wang X J and Gu H G 2022 ERA 30 459
[47] Wang X J, Gu H G, Li Y Y, et al. 2022 Mod. Phys. Lett. B 36 2250082
[48] Zeberg H, Blomberg C and Arhem P 2010 PLoS Comput. Biol. 6 e1000753
[49] Liu C M, Liu X L and Liu S Q 2014 Biol. Cybern. 108 75
[50] Nigam A, Hargus N J, Barker B S, et al. 2019 Epilepsy Res. 154 132
[51] Stephenson-Jones M, Yu K, Ahrens S, et al. 2016 Nature 539 289
[52] McGregor M M and Nelson A B 2001 Neuron 101 1042
[53] Wang Z H and Duan L X 2022 Nonlinear Dyn. 108 191
[54] Njap F, Claussen J C, Moser A, et al. 2012 Cogn. Neurodynamics 6 333
[55] Gerstner W, Kistler W M, Naud R, et al. 2014 Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition (Cambridge University Press)
[56] Zhu T, Wei S and Wang Y 2022 J. Pain Res. 15 2029
[57] Morris C and Lecar H 1981 J. Biophys. 35 193
[58] Rinzel J, Terman D, Wang X J, et al. 1998 Science 279 1351
[59] Rubin J E and Terman D 2004 J. Comput. Neuronsci. 16 211
[60] Dhooge A, Govaerts W and Kuznetsov Y A 2003 ACM Trans. Math Softw 29 141
[61] Ermentrout B 2002 Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students (Philadelphia: SIAM Press)
[1] Dynamic responses of an energy harvesting system based on piezoelectric and electromagnetic mechanisms under colored noise
Yong-Ge Yang(杨勇歌), Yun Meng(孟运), Yuan-Hui Zeng(曾远辉), and Ya-Hui Sun(孙亚辉). Chin. Phys. B, 2023, 32(9): 090201.
[2] Improved quantum (t,n) threshold group signature
Yaodong Zhang(张耀东), Feng Liu(刘锋), and Haixin Zuo(左海新). Chin. Phys. B, 2023, 32(9): 090308.
[3] Fragmentation dynamics of electron-impact double ionization of helium
Shiwei Liu(刘士炜), Difa Ye(叶地发), and Jie Liu(刘杰). Chin. Phys. B, 2023, 32(6): 063402.
[4] Synchronization-desynchronization transitions in networks of circle maps with sinusoidal coupling
Yun Zhai(翟云), Jinghua Xiao(肖井华), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2023, 32(6): 060505.
[5] Unstable periodic orbits analysis in the Qi system
Lian Jia(贾莲), Chengwei Dong(董成伟), Hantao Li(李瀚涛), and Xiaohong Sui(眭晓红). Chin. Phys. B, 2023, 32(4): 040502.
[6] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[7] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[8] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[9] Exact solutions of a time-fractional modified KdV equation via bifurcation analysis
Min-Yuan Liu(刘敏远), Hui Xu(许慧), and Zeng-Gui Wang(王增桂). Chin. Phys. B, 2023, 32(12): 120204.
[10] Time-dependent variational approach to solve multi-dimensional time-dependent Schrödinger equation
Mingrui He(何明睿), Zhe Wang(王哲), Lufeng Yao(姚陆锋), and Yang Li(李洋). Chin. Phys. B, 2023, 32(12): 124206.
[11] Investigation of degradation and recovery characteristics of NBTI in 28-nm high-k metal gate process
Wei-Tai Gong(巩伟泰), Yan Li(李闫), Ya-Bin Sun(孙亚宾), Yan-Ling Shi(石艳玲), and Xiao-Jin Li(李小进). Chin. Phys. B, 2023, 32(12): 128502.
[12] P-type cold-source field-effect transistors with TcX2 and ReX2 (X=S, Se) cold source electrodes: A computational study
Qianwen Wang(汪倩文), Jixuan Wu(武继璇), Xuepeng Zhan(詹学鹏), Pengpeng Sang(桑鹏鹏), and Jiezhi Chen(陈杰智). Chin. Phys. B, 2023, 32(12): 127203.
[13] Design and investigation of doping-less gate-all-around TFET with Mg2Si source material for low power and enhanced performance applications
Pranav Agarwal, Sankalp Rai, Rakshit Y. A, and Varun Mishra. Chin. Phys. B, 2023, 32(10): 107310.
[14] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[15] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
No Suggested Reading articles found!