Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 120204    DOI: 10.1088/1674-1056/acf9e8
GENERAL Prev   Next  

Exact solutions of a time-fractional modified KdV equation via bifurcation analysis

Min-Yuan Liu(刘敏远), Hui Xu(许慧), and Zeng-Gui Wang(王增桂)
School of Mathematical Sciences, Liaocheng University, Liaocheng 252059, China
Abstract  The time-fractional modified Korteweg-de Vries (KdV) equation is committed to establish exact solutions by employing the bifurcation method. Firstly, the phase portraits and related qualitative analysis are comprehensively provided. Then, we give parametric expressions of different types of solutions matching with the corresponding orbits. Finally, solution profiles, 3D and density plots of some solutions are presented with proper parametric choices.
Keywords:  the time-fractional modified KdV equation      bifurcation analysis      exact solutions  
Received:  07 August 2023      Revised:  14 September 2023      Accepted manuscript online:  15 September 2023
PACS:  02.30.Oz (Bifurcation theory)  
  02.30.Jr (Partial differential equations)  
  04.20.Jb (Exact solutions)  
Fund: Project supported by the Natural Science Foundation of Shandong Province (Grant No.ZR2021MA084), the Natural Science Foundation of Liaocheng University (Grant No.318012025), and Discipline with Strong Characteristics of Liaocheng University—Intelligent Science and Technology (Grant No.319462208).
Corresponding Authors:  Zeng-Gui Wang     E-mail:  wangzenggui@lcu.edu.cn

Cite this article: 

Min-Yuan Liu(刘敏远), Hui Xu(许慧), and Zeng-Gui Wang(王增桂) Exact solutions of a time-fractional modified KdV equation via bifurcation analysis 2023 Chin. Phys. B 32 120204

[1] Hirota R 1972 J. Phys. Soc. Jpn. 33 1456
[2] Li L, Duan C N and Yu F J 2019 Phys. Lett. A 383 1578
[3] He J H 2000 Int. J. Non-Linear Mech. 35 37
[4] Elbrolosy M E and Elmandouh A A 2020 Eur. Phys. J. Plus 135 533
[5] Li J B and Chen G R 2005 Int. J. Bifur. Chaos 15 3973
[6] Zhu W J, Xia Y H, Zhang B and Bai Y Zh 2019 Int. J. Bifur. Chaos 29 1950041
[7] Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer)
[8] Wang M, Tian B and Zhou T Y 2021 Chaos Solitons Fractals 152 111411
[9] Guan X, Liu W J, Zhou Q and Biswas A 2019 Nonlinear Dyn. 98 1491
[10] Kaplan M, Bekir A and Akbulut A 2016 Nonlinear Dyn. 85 2843
[11] Gurefe Y 2020 Revista Mexicana de Física 66 771
[12] Bulut H, Pandir Y and Demiray S T 2014 Int. J. Model. Optim. 4 315
[13] Ma W X 2019 J. Math. Anal. Appl. 471 796
[14] Gkogkou A, Prinari B, Feng B F and Trubatch A D 2022 Stud. Appl. Math. 148 918
[15] Kumar S, Kumar D and Kumar A 2021 Chaos Solitons Fractals 142 110507
[16] Ma W X 2023 Part. Differ. Equ. Appl. Math. 7 100515
[17] Ma W X 2023 Rep. Math. Phys. 92 19
[18] Ma W X 2023 Int. J. Geometric Methods Mod. Phys. 20 2350098
[19] Ma W X 2023 Appl. Math. Lett. 145 108775
[20] Sahoo S and Ray S S 2016 Physica A 448 265
[21] Zafar A 2019 Nonlinear Eng. 8 728
[22] Bhrawy A H, Doha E H, Ezz-Eldien S S and Abdelkawy M A 2015 Comput. Model. Eng. Sci. 104 185
[23] Li C, Kumar A, Kumar S and Yang X J 2016 Nonlinear Sci. Appl. 9 5463
[24] Arshad M S and Iqbal J 2019 Sci. Inquiry Rev. 3 47
[25] Akbulut A and Kaplan M 2018 Comput. Math. Appl. 75 876
[26] Wang G and Xu T 2013 Boundary Value Problems 2013 1
[27] Wen Z 2020 Appl. Math. Comput. 366 124735
[28] Song Y J, Yang B and Wang Z G 2023 Phys. Lett. A 461 128647
[29] Alhamud M, Elbrolosy M and Elmandouh A 2022 Fractal and Fractional 7 16
[30] Yang S 2022 Scholars J. Phys. Math. Stat. 7 109
[31] Liang J L, Tang L K, Xia Y H and Zhang Y 2020 Int. J. Bifur. Chaos 30 2050004
[32] Atangana A, Baleanu D and Alsaedi A 2015 Open Math. 13 889
[1] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[2] Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(10): 100503.
[3] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[4] Dual mechanisms of Bcl-2 regulation in IP3-receptor-mediated Ca2+ release: A computational study
Hong Qi(祁宏), Zhi-Qiang Shi(史志强), Zhi-Chao Li(李智超), Chang-Jun Sun(孙长君), Shi-Miao Wang(王世苗), Xiang Li(李翔), and Jian-Wei Shuai(帅建伟). Chin. Phys. B, 2021, 30(10): 108704.
[5] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[6] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[7] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[8] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[9] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[10] Fusion, fission, and annihilation of complex waves for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff system
Zhu Wei-Ting (朱维婷), Ma Song-Hua (马松华), Fang Jian-Ping (方建平), Ma Zheng-Yi (马正义), Zhu Hai-Ping (朱海平). Chin. Phys. B, 2014, 23(6): 060505.
[11] Oscillating multidromion excitations in higher-dimensional nonlinear lattice with intersite and external on-site potentials using symbolic computation
B. Srividya, L. Kavitha, R. Ravichandran, D. Gopi. Chin. Phys. B, 2014, 23(1): 010307.
[12] New exact solutions of (3+1)-dimensional Jimbo-Miwa system
Chen Yuan-Ming (陈元明), Ma Song-Hua (马松华), Ma Zheng-Yi (马正义). Chin. Phys. B, 2013, 22(5): 050510.
[13] Exact solutions of (3+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq equations
Liu Ping (刘萍), Li Zi-Liang (李子良). Chin. Phys. B, 2013, 22(5): 050204.
[14] Comparative study of travelling wave and numerical solutions for the coupled short pulse (CSP) equation
Vikas Kumar, R. K. Gupta, Ram Jiwari. Chin. Phys. B, 2013, 22(5): 050201.
[15] Novel exact solutions of coupled nonlinear Schrödinger equations with time–space modulation
Chen Jun-Chao (陈俊超), Li Biao (李彪), Chen Yong (陈勇). Chin. Phys. B, 2013, 22(11): 110306.
No Suggested Reading articles found!