Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 090501    DOI: 10.1088/1674-1056/acd922
GENERAL Prev   Next  

Dynamics of bubble-shaped Bose-Einstein condensates on two-dimensional cross-section in micro-gravity environment

Tie-Fu Zhang(张铁夫)1,2, Cheng-Xi Li(李成蹊)1,2, and Wu-Ming Liu(刘伍明)1,2,3,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We investigated the dynamic evolution and interference phenomena of bubble-shaped Bose-Einstein condensates achievable in a micro-gravity environment. Using numerical solutions of the Gross-Pitaevskii equation describing the dynamic evolution of the bubble-shaped Bose-Einstein condensates, we plotted the evolution of the wave function density distribution on its two-dimensional (2D) cross-section and analysed the resulting patterns. We found that changes in the strength of atomic interactions and initial momentum can affect the dynamic evolution of the bubble-shaped Bose-Einstein condensates and their interference fringes. Notably, we have observed that when the initial momentum is sufficiently high, the thickness of the bubble-shaped Bose-Einstein condensate undergoes a counterintuitive thinning, which is a counterintuitive result that requires further investigation. Our findings are poised to advance our comprehension of the physical essence of bubble-shaped Bose-Einstein condensates and to facilitate the development of relevant experiments in micro-gravity environments.
Keywords:  boson systems      ultracold gases      dynamic properties of condensates  
Received:  25 March 2023      Revised:  19 May 2023      Accepted manuscript online:  26 May 2023
PACS:  05.30.Jp (Boson systems)  
  67.85.-d (Ultracold gases, trapped gases)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1400900, 2021YFA0718300, and 2021YFA1402100), the National Natural Science Foundation of China (Grant Nos. 61835013, 12174461, 12234012, and 12334012), and the Space Application System of China Manned Space Program.
Corresponding Authors:  Wu-Ming Liu     E-mail:  wliu@iphy.ac.cn

Cite this article: 

Tie-Fu Zhang(张铁夫), Cheng-Xi Li(李成蹊), and Wu-Ming Liu(刘伍明) Dynamics of bubble-shaped Bose-Einstein condensates on two-dimensional cross-section in micro-gravity environment 2023 Chin. Phys. B 32 090501

[1] Lundblad N, Aveline D C, Balaž A, Bentine E, Bigelow N P, Boegel P, Efremov M A, Gaaloul N, Meister M, Olshanii M, de Melo C A R S, Tononi A, Vishveshwara S, White A C, Wolf A and Garraway B M 2023 Quantum Science and Technology 8 024003
[2] Carollo R A, Aveline D C, Rhyno B, Vishveshwara S, Lannert C, Murphree J D, Elliott E R, Williams J R, Thompson R J and Lundblad N 2020 Nature 606 281
[3] Aveline D C, Williams J R, Elliott E R, Dutenhoffer C, Kellogg J R, Kohel J M, Lay N E, Oudrhiri K, Shotwell R F and Yu N 2020 Nature 582 193
[4] Zobay O and Garraway B M 2001 Phys. Rev. Lett. 86 1195
[5] Zobay O and Garraway B M 2004 Phys. Rev. A 69 023605
[6] Garraway B M and Perrin H 2016 J. Phys. B: At. Mol. Opt. Phys. 49 172001
[7] Lundblad N, Carollo R, Lannert C, Gold M, Jiang X, Paseltiner D, Sergay N and Aveline D 2019 npj Microgravity 5 30
[8] Colombe Y, Knyazchyan E, Morizot O, Mercier B, Lorent V and Perrin H 2004 Europhys. Lett. 67 593
[9] White M, Gao H, Pasienski M and DeMarco B 2006 Phys. Rev. A 74 023616
[10] Harte T L, Bentine E, Luksch K, Barker A J, Trypogeorgos D, Yuen B and Foot C J 2018 Phys. Rev. A 97 013616
[11] Tononi A, Cinti F and Salasnich L 2020 Phys. Rev. Lett. 125 010402
[12] Gross E P 1961 Il Nuovo Cimento 20 454
[13] Gross E P 1963 J. Math. Phys. 4 195
[14] Pitaevskii L P 1961 Sov. Phys. JETP 13 451
[15] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
[16] Liu L, Lü D S, Chen W B, Li T, Qu Q Z, Wang B, Li L, Ren W, Dong Z R and Zhao J B 2018 Nat. Commun. 9 2760
[17] Lachmann M D, Ahlers H, Becker D, Dinkelaker A N, Grosse J, Hellmig O, Müntinga H, Schkolnik V, Seidel S T and Wendrich T 2021 Nat. Commun. 12 1317
[18] Gaaloul N, Meister M, Corgier R, Pichery A, Boegel P, Herr W, Ahlers H, Charron E, Williams J R and Thompson R J 2022 Nat. Commun. 13 7889
[19] Müntinga H, Ahlers H, Krutzik M, Wenzlawski A, Arnold S, Becker D, Bongs K, Dittus H, Duncker H, Gaaloul N, Gherasim C, Giese E, Grzeschik C, Hänsch T W, Hellmig O, Herr W, Herrmann S, Kajari E, Kleinert S, Lämmerzahl C, Lewoczko-Adamczyk W, Malcolm J, Meyer N, Nolte R, Peters A, Popp M, Reichel J, Roura A, Rudolph J, Schiemangk M, Schneider M, Seidel S T, Sengstock K, Tamma V, Valenzuela T, Vogel A, Walser R, Wendrich T, Windpassinger P, Zeller W, van Zoest T, Ertmer W, Schleich W P and Rasel E M 2013 Phys. Rev. Lett. 110 093602
[20] Bogoliubov N 1947 J. Phys. 11 23
[21] Li J, Yu Y M, Zhuang L and Liu W M 2017 Phys. Rev. A 95 043633
[22] Han W, Zhang X F, Wang D S, Jiang H F, Zhang W and Zhang S G 2018 Phys. Rev. Lett. 121 030404
[23] Han W, Zhang X F, Song S W, Saito H, Zhang W, Liu W M and Zhang S G 2016 Phys. Rev. A 94 033629
[24] Liu W M, Wu B and Niu Q 2000 Phys. Rev. Lett. 84 2294
[25] Wolf A, Boegel P, Meister M, Balaž A, Gaaloul N and Efremov M A 2022 Phys. Rev. A 106 013309
[26] Wallis H, Röhrl A, Naraschewski M and Schenzle A 1997 Phys. Rev. A 55 2109
[27] Röhrl A, Naraschewski M, Schenzle A and Wallis H 1997 Phys. Rev. Lett. 78 4143
[28] Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M and Ketterle W 1997 Science 275 637
[29] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[30] Fano U 1935 Il Nuovo Cimento 12 154
[31] Fano U 1958 Ann. Phys. 124 1866
[32] Fano U, Pupillo G, Zannoni A and Clark C W 2005 Journal of Research of the National Institute of Standards and Technology 110 583
[33] Feshbach H 1958 Ann. Phys. 5 357
[34] Feshbach H 1962 Annals of Physics 19 287
[35] Moerdijk A J, Verhaar B J and Axelsson A 1995 Phys. Rev. A 51 4852
[1] Quantum degenerate Bose-Fermi atomic gas mixture of 23Na and 40K
Ziliang Li(李子亮), Zhengyu Gu(顾正宇), Zhenlian Shi(师振莲), Pengjun Wang(王鹏军), and Jing Zhang(张靖). Chin. Phys. B, 2023, 32(2): 023701.
[2] High efficient Raman sideband cooling and strong three-body recombination of atoms
Yuqing Li(李玉清), Zhennan Liu(刘震南), Yunfei Wang(王云飞), Jizhou Wu(武寄洲), Wenliang Liu(刘文良), Yongming Fu(付永明), Peng Li(李鹏), Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2023, 32(10): 103701.
[3] Experimental realization of two-dimensional single-layer ultracold gases of 87Rb in an accordion lattice
Liangwei Wang(王良伟), Kai Wen(文凯), Fangde Liu(刘方德), Yunda Li(李云达), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), Liangchao Chen(陈良超), Wei Han(韩伟), Zengming Meng(孟增明), and Jing Zhang(张靖). Chin. Phys. B, 2022, 31(10): 103401.
[4] Production of dual species Bose-Einstein condensates of 39K and 87Rb
Cheng-Dong Mi(米成栋), Khan Sadiq Nawaz, Peng-Jun Wang(王鹏军), Liang-Chao Chen(陈良超), Zeng-Ming Meng(孟增明), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2021, 30(6): 063401.
[5] Collective modes of Weyl fermions with repulsive S-wave interaction
Xun-Gao Wang(王勋高), Huan-Yu Wang(王寰宇), Jiang-Min Zhang(张江敏), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2020, 29(11): 117201.
No Suggested Reading articles found!