Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 090304    DOI: 10.1088/1674-1056/acac0c
GENERAL Prev   Next  

Commensurate and incommensurate Haldane phases for a spin-1 bilinear-biquadratic model

Yan-Wei Dai(代艳伟)1,†, Ai-Min Chen(陈爱民)2,‡, Xi-Jing Liu(刘希婧)3, and Yao-Heng Su(苏耀恒)2
1 Centre for Modern Physics and Department of Physics, Chongqing University, Chongqing 400044, China;
2 School of Science, Xi'an Polytechnic University, Xi'an 710048, China;
3 The School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400044, China
Abstract  Commensurate and incommensurate Haldane phases for a spin-1 bilinear-biquadratic model are investigated using an infinite matrix product state algorithm. The bipartite entanglement entropy can detect a transition point between the two phases. In both phases, the entanglement spectrum shows double degeneracy. We calculate the nonlocal order parameter of the bond-centered inversion in both phases, which rapidly approaches a saturation value of -1 as the segment length increases. The nonlocal order parameter of the bond-centered inversion with a saturation value -1 and the nonzero value string order indicate that the Haldane phase is a symmetry-protected topological phase. To distinguish the commensurate and incommensurate Haldane phases, the transversal spin correlation and corresponding momentum distribution of the structure factor are analyzed. As a result, the transversal spin correlations exhibit different decay forms in both phases.
Keywords:  commensurate and incommensurate phases      symmetry-protected topological phase      transversal spin correlation  
Received:  15 September 2022      Revised:  17 November 2022      Accepted manuscript online:  16 December 2022
PACS:  03.67.-a (Quantum information)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  05.70.Fh (Phase transitions: general studies)  
  75.40.Mg (Numerical simulation studies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11805285), the Natural Science Foundation of Shaanxi Province of China (Grant No. 2022JM-033), and the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN 201900703).
Corresponding Authors:  Yan-Wei Dai, Ai-Min Chen     E-mail:  daiyw@cqu.edu.cn;chenaimin_xa@163.com

Cite this article: 

Yan-Wei Dai(代艳伟), Ai-Min Chen(陈爱民), Xi-Jing Liu(刘希婧), and Yao-Heng Su(苏耀恒) Commensurate and incommensurate Haldane phases for a spin-1 bilinear-biquadratic model 2023 Chin. Phys. B 32 090304

[1] Sachdev S 1999 Quantum Phase Transitions (Cambridge University Press, Cambridge)
[2] Haldane F D M 1983 Phys. Rev. Lett. 50 1153
[3] Haldane F D M 1983 Phys. Lett. A 93 464
[4] Murashima T and Nomura K 2006 Phys. Rev. B 73 214431
[5] Fáth G and Sütõ A 2000 Phys. Rev. B 62 3778
[6] Nomura K 2003 J. Phys. Soc. Jpn. 72 476
[7] Yarotsky D A 2008 J. Stat. Phys. 130 957
[8] Chubukov A V 1991 Phys. Rev. B 43 3337
[9] Kawashima N 2002 Prog. Theor. Phys. Suppl. 145 138
[10] Ivanov B A and Kolezhuk A K 2003 Phys. Rev. B 68 052401
[11] Buchta K, Fáth G, Legeza O and Sólyom J 2005 Phys. Rev. B 72 054433
[12] Rizzi M, Rossini D, De Chiara G, Montangero S and Fazio R 2005 Phys. Rev. Lett. 95 240404
[13] Läuchli A, Schmid G and Trebst S 2006 Phys. Rev. B 74 144426
[14] Porras D, Verstraete F and Cirac J I 2006 Phys. Rev. B 73 014410
[15] Romero-Isart O, Eckert K and Sanpera A 2007 Phys. Rev. A 75 050303
[16] Dai Y W, Shi Q Q, Zhou H Q and McCulloch I 2022 arXiv: 2201.01434
[17] Chen A M, Su Y H and Wang H L 2015 Eur. Phys. J. B 88 269
[18] Jakab D, Szirmai G and Zimborás Z 2018 J. Phys. A: Math. Theor. 51 105201
[19] Li P and Kou S P 2012 J. Phys.: Condens. Matter 24 446001
[20] Fáth G and Sólyom J 1991 Phys. Rev. B 44 11836
[21] Sutherland B 1975 Phys. Rev. B 12 3795
[22] Batista C D, Ortiz G and Gubernatis J E 2002 Phys. Rev. B 65 180402
[23] Affleck I 1990 J. Phys.: Condens. Matter 2 405
[24] Takhtajan L 1982 Phys. Lett. A 87 479
[25] Babujian H 1983 Nucl. Phys. B 215 317
[26] Barber M N and Batchelor M T 1989 Phys. Rev. B 40 4621
[27] Affeck T, Kennedy T, Lieb E and Tasaki H 1987 Phys. Rev. Lett. 59 799
[28] Pollmann F, Turner A M, Berg E and Oshikawa M 2010 Phys. Rev. B 81 064439
[29] Chen X, Gu Z C and Wen X G 2011 Phys. Rev. B 83 035107
[30] Pollmann F, Turner A M, Berg E and Oshikawa M 2010 Phys. Rev. B 81 064439
[31] Rao W J, Zhu G Y and Zhang G M 2016 Phys. Rev. B 93 165135
[32] Vidal G 2007 Phys. Rev. Lett. 98 070201
[33] Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504
[34] Levin M and Wen X G 2006 Phys. Rev. Lett. 96 110405
[35] Kitaev A and Preskill J 2006 Phys. Rev. Lett. 96 110404
[36] Pollmann F and Turner A M 2010 Phys. Rev. B 81 064439
[37] Calabrese P and Lefevre A 2008 Phys. Rev. A 78 032329
[38] McCulloch I P 2008 arXiv: 0804.2509
[39] Pollmann F and Turner A M 2012 Phys. Rev. B 86 125441
[40] Fuji Y, Pollmann F and Oshikawa M 2015 Phys. Rev. Lett. 114 177204
[41] Kennedy T and Tasaki H 1992 Phys. Rev. B 45 304
[42] Tu H H, Zhang G M and Xiang T 2008 J. Phys. A: Math. Theor. 41 415201
[43] White S R and Huse D A 1993 Phys. Rev. B 48 3844
[44] Sengupta P and Batista C D 2007 Phys. Rev. Lett. 98 227201
[45] Zare M H and Mosadeq H 2021 Phys. Rev. B 104 115154
[46] Dai Y W, Liu X J, Li S H and Chen A M 2022 Phys. Rev. E 106 054104
[1] Fast and perfect state transfer in superconducting circuit with tunable coupler
Chi Zhang(张驰), Tian-Le Wang(王天乐), Ze-An Zhao(赵泽安), Xiao-Yan Yang(杨小燕), Liang-Liang Guo(郭亮亮), Zhi-Long Jia(贾志龙), Peng Duan(段鹏), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(11): 110305.
[2] The application of quantum coherence as a resource
Si-Yuan Liu(刘思远) and Heng Fan(范桁). Chin. Phys. B, 2023, 32(11): 110304.
[3] Deterministic remote preparation of multi-qubit equatorial states through dissipative channels
Liu-Yong Cheng(程留永), Shi-Feng Zhang(张世凤), Zuan Meng(孟钻), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2023, 32(11): 110307.
[4] Visualizing and witnessing first-order coherence, Bell nonlocality and purity by using a quantum steering ellipsoid in the non-inertial frame
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Ming-Ming Du(杜明明), Min Kong(孔敏), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(10): 100305.
[5] Digital holographic imaging via direct quantum wavefunction reconstruction
Meng-Jun Hu(胡孟军) and Yong-Sheng Zhang(张永生). Chin. Phys. B, 2023, 32(10): 100312.
[6] Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
Zhimin Wang(王治旻), Zhuang Ma(马壮), Xiangmin Yu(喻祥敏), Wen Zheng(郑文), Kun Zhou(周坤), Yujia Zhang(张宇佳), Yu Zhang(张钰), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(10): 100304.
[7] Non-Gaussian approach: Withstanding loss and noise of multi-scattering underwater channel for continuous-variable quantum teleportation
Hao Wu(吴昊), Hang Zhang(张航), Yiwu Zhu(朱益武), Gaofeng Luo(罗高峰), Zhiyue Zuo(左峙岳), Xinchao Ruan(阮新朝), and Ying Guo(郭迎). Chin. Phys. B, 2023, 32(10): 100311.
[8] Long-range interacting Stark many-body probes with super-Heisenberg precision
Rozhin Yousefjani, Xingjian He(何行健), and Abolfazl Bayat. Chin. Phys. B, 2023, 32(10): 100313.
[9] State transfer and entanglement between two- and four-level atoms in a cavity
Si-Wu Li(李思吾), Tianfeng Feng(冯田峰), Xiao-Long Hu(胡骁龙), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2023, 32(10): 104214.
[10] Geometric discord of tripartite quantum systems
Chunhe Xiong(熊春河), Wentao Qi(齐文韬), Maoke Miao(缪茂可), and Minghui Wu(吴明晖). Chin. Phys. B, 2023, 32(10): 100301.
[11] A backdoor attack against quantum neural networks with limited information
Chen-Yi Huang(黄晨猗) and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2023, 32(10): 100306.
[12] Approximate error correction scheme for three-dimensional surface codes based reinforcement learning
Ying-Jie Qu(曲英杰), Zhao Chen(陈钊), Wei-Jie Wang(王伟杰), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2023, 32(10): 100307.
[13] Quantum homomorphic broadcast multi-signature based on homomorphic aggregation
Xin Xu(徐鑫) and Ai-Han Yin(殷爱菡). Chin. Phys. B, 2023, 32(7): 070302.
[14] A new method of constructing adversarial examples for quantum variational circuits
Jinge Yan(颜金歌), Lili Yan(闫丽丽), and Shibin Zhang(张仕斌). Chin. Phys. B, 2023, 32(7): 070304.
[15] Improving source-in-the-middle continuous-variable quantum key distribution using a heralded hybrid linear amplifier
Lei-Xin Wu(伍磊鑫), Yan-Yan Feng(冯艳艳), and Jian Zhou(周健). Chin. Phys. B, 2023, 32(7): 070310.
No Suggested Reading articles found!