|
|
Commensurate and incommensurate Haldane phases for a spin-1 bilinear-biquadratic model |
Yan-Wei Dai(代艳伟)1,†, Ai-Min Chen(陈爱民)2,‡, Xi-Jing Liu(刘希婧)3, and Yao-Heng Su(苏耀恒)2 |
1 Centre for Modern Physics and Department of Physics, Chongqing University, Chongqing 400044, China; 2 School of Science, Xi'an Polytechnic University, Xi'an 710048, China; 3 The School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400044, China |
|
|
Abstract Commensurate and incommensurate Haldane phases for a spin-1 bilinear-biquadratic model are investigated using an infinite matrix product state algorithm. The bipartite entanglement entropy can detect a transition point between the two phases. In both phases, the entanglement spectrum shows double degeneracy. We calculate the nonlocal order parameter of the bond-centered inversion in both phases, which rapidly approaches a saturation value of -1 as the segment length increases. The nonlocal order parameter of the bond-centered inversion with a saturation value -1 and the nonzero value string order indicate that the Haldane phase is a symmetry-protected topological phase. To distinguish the commensurate and incommensurate Haldane phases, the transversal spin correlation and corresponding momentum distribution of the structure factor are analyzed. As a result, the transversal spin correlations exhibit different decay forms in both phases.
|
Received: 15 September 2022
Revised: 17 November 2022
Accepted manuscript online: 16 December 2022
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
05.70.Fh
|
(Phase transitions: general studies)
|
|
75.40.Mg
|
(Numerical simulation studies)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11805285), the Natural Science Foundation of Shaanxi Province of China (Grant No. 2022JM-033), and the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN 201900703). |
Corresponding Authors:
Yan-Wei Dai, Ai-Min Chen
E-mail: daiyw@cqu.edu.cn;chenaimin_xa@163.com
|
Cite this article:
Yan-Wei Dai(代艳伟), Ai-Min Chen(陈爱民), Xi-Jing Liu(刘希婧), and Yao-Heng Su(苏耀恒) Commensurate and incommensurate Haldane phases for a spin-1 bilinear-biquadratic model 2023 Chin. Phys. B 32 090304
|
[1] Sachdev S 1999 Quantum Phase Transitions (Cambridge University Press, Cambridge) [2] Haldane F D M 1983 Phys. Rev. Lett. 50 1153 [3] Haldane F D M 1983 Phys. Lett. A 93 464 [4] Murashima T and Nomura K 2006 Phys. Rev. B 73 214431 [5] Fáth G and Sütõ A 2000 Phys. Rev. B 62 3778 [6] Nomura K 2003 J. Phys. Soc. Jpn. 72 476 [7] Yarotsky D A 2008 J. Stat. Phys. 130 957 [8] Chubukov A V 1991 Phys. Rev. B 43 3337 [9] Kawashima N 2002 Prog. Theor. Phys. Suppl. 145 138 [10] Ivanov B A and Kolezhuk A K 2003 Phys. Rev. B 68 052401 [11] Buchta K, Fáth G, Legeza O and Sólyom J 2005 Phys. Rev. B 72 054433 [12] Rizzi M, Rossini D, De Chiara G, Montangero S and Fazio R 2005 Phys. Rev. Lett. 95 240404 [13] Läuchli A, Schmid G and Trebst S 2006 Phys. Rev. B 74 144426 [14] Porras D, Verstraete F and Cirac J I 2006 Phys. Rev. B 73 014410 [15] Romero-Isart O, Eckert K and Sanpera A 2007 Phys. Rev. A 75 050303 [16] Dai Y W, Shi Q Q, Zhou H Q and McCulloch I 2022 arXiv: 2201.01434 [17] Chen A M, Su Y H and Wang H L 2015 Eur. Phys. J. B 88 269 [18] Jakab D, Szirmai G and Zimborás Z 2018 J. Phys. A: Math. Theor. 51 105201 [19] Li P and Kou S P 2012 J. Phys.: Condens. Matter 24 446001 [20] Fáth G and Sólyom J 1991 Phys. Rev. B 44 11836 [21] Sutherland B 1975 Phys. Rev. B 12 3795 [22] Batista C D, Ortiz G and Gubernatis J E 2002 Phys. Rev. B 65 180402 [23] Affleck I 1990 J. Phys.: Condens. Matter 2 405 [24] Takhtajan L 1982 Phys. Lett. A 87 479 [25] Babujian H 1983 Nucl. Phys. B 215 317 [26] Barber M N and Batchelor M T 1989 Phys. Rev. B 40 4621 [27] Affeck T, Kennedy T, Lieb E and Tasaki H 1987 Phys. Rev. Lett. 59 799 [28] Pollmann F, Turner A M, Berg E and Oshikawa M 2010 Phys. Rev. B 81 064439 [29] Chen X, Gu Z C and Wen X G 2011 Phys. Rev. B 83 035107 [30] Pollmann F, Turner A M, Berg E and Oshikawa M 2010 Phys. Rev. B 81 064439 [31] Rao W J, Zhu G Y and Zhang G M 2016 Phys. Rev. B 93 165135 [32] Vidal G 2007 Phys. Rev. Lett. 98 070201 [33] Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504 [34] Levin M and Wen X G 2006 Phys. Rev. Lett. 96 110405 [35] Kitaev A and Preskill J 2006 Phys. Rev. Lett. 96 110404 [36] Pollmann F and Turner A M 2010 Phys. Rev. B 81 064439 [37] Calabrese P and Lefevre A 2008 Phys. Rev. A 78 032329 [38] McCulloch I P 2008 arXiv: 0804.2509 [39] Pollmann F and Turner A M 2012 Phys. Rev. B 86 125441 [40] Fuji Y, Pollmann F and Oshikawa M 2015 Phys. Rev. Lett. 114 177204 [41] Kennedy T and Tasaki H 1992 Phys. Rev. B 45 304 [42] Tu H H, Zhang G M and Xiang T 2008 J. Phys. A: Math. Theor. 41 415201 [43] White S R and Huse D A 1993 Phys. Rev. B 48 3844 [44] Sengupta P and Batista C D 2007 Phys. Rev. Lett. 98 227201 [45] Zare M H and Mosadeq H 2021 Phys. Rev. B 104 115154 [46] Dai Y W, Liu X J, Li S H and Chen A M 2022 Phys. Rev. E 106 054104 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|