Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 084102    DOI: 10.1088/1674-1056/ac9a39
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Design of an optically-transparent ultra-broadband microwave absorber

Mian Gao(高冕), Qiang Chen(陈强), Yue-Jun Zheng(郑月军), Fang Yuan(袁方), Zhan-Shan Sun(孙占山), and Yun-Qi Fu(付云起)
College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
Abstract  The optical window of low-observable platform needs to be compatible with ultra-broadband absorption, hence an optically-transparent absorber with ultra-broadband absorption is designed and analyzed in this paper. The transparent materials indium-tin-oxide (ITO) film and polymethylmethacrylate (PMMA) are selected as the lossy layer and the supporting dielectric layer, respectively. The optically-transparent ultra-broadband absorber (OT-UBA) is composed of three layers of ITO square patterns, three layers of PMMA dielectric and a uniform ITO plane. The ITO square patterns can realize arbitrary equivalent series of RC (resistor and capacitor) circuit, so that three layers of ITO square patterns together with the ITO plane can achieve ultra-broadband absorption based on the equivalent circuit optimization. Measured results shows that the 90%-absorption bandwidth covers 2-17 GHz while the light transmittance achieves 59.6% with a total thickness of only 12.9 mm.
Keywords:  ultra-broadband absorbers      optically-transparent      equivalent circuit optimization  
Received:  11 August 2022      Revised:  09 October 2022      Accepted manuscript online:  14 October 2022
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  12.20.Fv (Experimental tests)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61901492 and 61901493) and Provincial Natural Science Foundation of Hunan (Grant No.2022JJ30665).
Corresponding Authors:  Yun-Qi Fu     E-mail:  yunqifu@nudt.edu.cn

Cite this article: 

Mian Gao(高冕), Qiang Chen(陈强), Yue-Jun Zheng(郑月军), Fang Yuan(袁方), Zhan-Shan Sun(孙占山), and Yun-Qi Fu(付云起) Design of an optically-transparent ultra-broadband microwave absorber 2023 Chin. Phys. B 32 084102

[1] Xiao H, Qin R, Lv M and Wang C 2020 Appl. Sci. 10 9125
[2] Yi D, Wei X and Xu Y 2017 IEEE Trans. Nano 16 484
[3] Wei L and Atif S 2019 13th European Conference on Antennas and Propagation (EuCAP), 31 March 2019-05 April 2019, Krakow, Poland
[4] Wang Q, Bi K and Lim S 2020 IEEE Access 8 175998
[5] Lu F and Han T 2019 Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall, 17-20 December 2019, Xiamen, China
[6] Wang B L 2020 Chin. Phys. B 29 045202
[7] Hong G, Shun Z, Xiao W and Xin L 2017 Chin. Phys. Lett. 34 25
[8] Wang F and Wei B 2019 Acta Phys. Sin. 68 244101 (in Chinese)
[9] Hai L, Yang L and Bin W 2015 Chin. Phys. Lett. 32 44102
[10] Wei C, Hong L and Min S 2016 Chin. Phys. Lett. 33 124101
[11] Tao Z and Hou Z 2020 Chin. Phys. B 29 094101
[12] Zhi S, Meng Y and Bi X 2020 Chin. Phys. B 29 104101
[13] Costa F, Monorchio A and Manara G 2010 IEEE Trans. Antennas. Propag. 58 1551
[14] Shang Y, Shen Z and Xiao S 2013 IEEE Trans. Antennas. Propag. 61 6022
[15] Li L, Xi R, Liu H and Lv Z 2018 Appl. Phys. Express 11 52001
[16] Sheokand H, Singh G, Ghosh S, Saikia M, Srivastava K V, Ramkumar J and Ramakrishna S A 2018 Twenty Fourth National Conference on Communications NCC, 25-28 February 2018, Hyderabad, India, pp. 113-117
[17] Zhang L, Shi Y, Yang J X, Zhang X and Li L 2019 IEEE Access 7 137848
[18] Jang T, Youn H, Shin Y J and Guo L J 2014 ACS Phot. 1 279
[19] Sheokand H, Singh G, Ghosh S, Ramkumar J, Ramakrishna S A and Srivastava K V 2019 IEEE Antennas Wireless Propag. Lett 18 113
[20] Sun J, Liu L, Dong G and Zhou J 2011 Opt. Express 19 21155
[21] Alireza K and Anders K 2009 IEEE Trans. Antennas. Propag. 57 2307
[22] Jiang H, Yang W, Li R, Lei S, Chen B, Hu H and Zhao Z 2021 IEEE Antennas Wireless Propag. Lett 20 1399
[23] Xiao H, Qin R, Lv M and Wang C 2020 Appl. Sci. 10 9125
[24] Min P, Song Z, Yang L, Dai B and Zhu J 2020 Opt. Express 28 19518
[1] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[2] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[3] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[4] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
[5] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[6] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
[7] Single-beam leaky-wave antenna with wide scanning angle and high scanning rate based on spoof surface plasmon polariton
Huan Jiang(蒋欢), Xiang-Yu Cao(曹祥玉), Tao Liu(刘涛), Liaori Jidi(吉地辽日), and Sijia Li(李思佳). Chin. Phys. B, 2022, 31(10): 104101.
[8] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[9] Design method of reusable reciprocal invisibility and phantom device
Cheng-Fu Yang(杨成福), Li-Jun Yun(云利军), and Jun-Wei Li(李俊玮). Chin. Phys. B, 2022, 31(8): 084101.
[10] Goos-Hänchen and Imbert-Fedorov shifts in tilted Weyl semimetals
Shuo-Qing Liu(刘硕卿), Yi-Fei Song(宋益飞), Ting Wan(万婷), You-Gang Ke(柯友刚), and Zhao-Ming Luo(罗朝明). Chin. Phys. B, 2022, 31(7): 074101.
[11] A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications
Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平). Chin. Phys. B, 2022, 31(5): 054102.
[12] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[13] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[14] Strong chirality in twisted bilayer α-MoO3
Bi-Yuan Wu(吴必园), Zhang-Xing Shi(石章兴), Feng Wu(吴丰), Ming-Jun Wang(王明军), and Xiao-Hu Wu(吴小虎). Chin. Phys. B, 2022, 31(4): 044101.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!