Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 084202    DOI: 10.1088/1674-1056/aca148
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Microwave absorption and bandwidth study of Y2Co17 rare earth soft magnetic alloy with easy-plane anisotropy

Yun-Guo Ma(马云国)1, Liang Qiao(乔亮)1,†, Zu-Ying Zheng(郑祖应)1, Hong-Bo Hao(郝宏波)2, Hao Wang(王浩)1, Zhe Sun(孙哲)1, Cheng-Fa Tu(涂成发)1, Tao Wang(王涛)1, Zheng Yang(杨正)1, and Fa-Shen Li(李发伸)1
1. Institute of Applied Magnetism, Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China;
2. State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou 014000, China
Abstract  The easy-plane anisotropy of the Y2Co17 rare earth soft magnetic alloy has high saturation magnetization and operating frequency, and good impedance matching. Therefore, it is expected to become a kind of high-performance microwave absorbing material. In this paper, Y2Co17 alloy was prepared by a reduction-diffusion method, and its micropowder was prepared as polyurethane (PU) based composite absorbing materials (Y2Co17/PU composites). The microwave properties of composites with different volume fractions were calculated. The composites showed outstanding absorption characteristics in the range of 20-30 vol%, and the minimum reflection loss (RL) was less than -50 dB. When the volume fraction was 25%, the effective absorption bandwidth could cover the X-band at a thickness of 1.5 mm, and the Ku-band at a thickness of 1.08 mm. The absorption mechanism was analyzed by the interface reflection model. The RL absorption peak bandwidth mechanism was discussed by using the amplitude relation and calculating the effective absorption bandwidth at different thicknesses. The effective absorption bandwidth values were in good agreement with the theoretical expectation.
Keywords:  reduction-diffusion method      microwave absorption      interface reflection model      effective absorption bandwidth  
Received:  31 May 2022      Revised:  07 November 2022      Accepted manuscript online:  09 November 2022
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
  71.20.Eh (Rare earth metals and alloys)  
  72.30.+q (High-frequency effects; plasma effects)  
Fund: Project supported by the National Key R&D Program of China (Grant No.2021YFB3501302) and the National Natural Science Foundation of China(Grant No.51731001).
Corresponding Authors:  Liang Qiao     E-mail:  qiaoliang@lzu.edu.cn

Cite this article: 

Yun-Guo Ma(马云国), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Hao Wang(王浩), Zhe Sun(孙哲), Cheng-Fa Tu(涂成发), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸) Microwave absorption and bandwidth study of Y2Co17 rare earth soft magnetic alloy with easy-plane anisotropy 2023 Chin. Phys. B 32 084202

[1] Liu X M, Xie G Z, Xie N Y, Gao X and Chen J 2020 J. Mater. Sci.: Mater. Electron. 31 17502
[2] Luo J H, Xu Y and Gao D D 2014 Solid State Sci. 37 40
[3] Wen F S, Zhang F, Xiang J Y, Hu W T, Yuan S J and Liu Z Y 2013 J. Magn. Magn. Mater. 343 281
[4] Wang J W, Wang B B, Feng A L, Jia Z R and Wu G L 2020 J. Alloys Compd. 834 155092
[5] Wang Y, He D W and Wang Y S 2021 Chin. Phys. B 30 067804
[6] Huang H L, Xia H, Guo Z B, Chen Y and Li H J 2017 Chin. Phys. B 26 025207
[7] Wang B L, Wu Q, Fu Y G and Liu T 2021 J. Mater. Sci. Technol. 86 91
[8] Sista K S, Dwarapudi S, Kumar D, Sinha G R and Moon A P 2021 J. Alloys Compd. 853 157251
[9] Liu Y, Li R, Jia Y and He Z X 2020 Chin. Phys. B 29 067701
[10] Wang Y K, Lin Z C, Liu Z, Qiao G Y, Zhang P Y, Li K W, Yang W Y, Han J Z, Liu S Q, Wang C S, Qiao L and Yang J B 2022 IEEE Trans. Magn. 58 2800204
[11] Zhuang X H, Tan G G, Ning M Q, Qi C Y, Ge X J, Yang Z and Man Q K 2021 J. Alloys Compd. 883 160835
[12] Wu P, Zhang Y D, Hao H B, Qiao L, Liu X, Wang T and Li F S 2022 J. Magn. Magn. Mater. 549 168962
[13] Hu Q W, Qiao G Y, Yang W Y, Liu Z, Zhang P Y, Liu S Q, Wang C S, Zhou D, Han R, Cai D Y, Hu B P and Yang J B 2020 J. Phys. D: Appl. Phys. 53 115001
[14] Wang P, Wang X M, Qiao L, Zhang J M, Wang G W, Duan B F, Wang T and Li F S 2018 J. Magn. Magn. Mater. 468 193
[15] He C K, Pan S K, Cheng L C, Liu X and Wu Y J 2015 J. Rare Earths. 33 271
[16] Zhong J P, Tan G G, Man Q K, Ning M Q, Gao Y, Liu X C and Pan J 2021 J. Mater. Sci.: Mater. Electron. 32 27849
[17] Yun J C, Jung S S, Lee J G, Choi C J and Lee J S 2010 Mater. Sci. Forum. 638-642 1796
[18] Chang W K, Young H K, Hyun G C and Young S K 2006 IEEE Nanotechnol. Mater. Devices Conf. OCT 22-25, 2006 Gyeongju, SOUTH KOREA, p. 658
[19] Krishnan T S 1980 Bull. Mater. Sci. 2 161
[20] Qi G J, Hino M and Yazawa A 1990 Mater. Trans., JIM. 31 463
[21] Eom N S A, Jeon E J, Haq M A, Lee J M, Choa Y H and Kim B S 2020 Mater. Lett. 268 127611
[22] Wang Y, Ahn J, Kim D, Ren W J, Liu W, Zhang Z D and Choi C J 2017 J. Magn. Magn. Mater. 439 91
[23] Tian S J 2020 Study on Preparation of Ultrafine Sm2Fe17N3 Magnetic Powder by reduction diffusion Method (Master Dissertation) (Zhejiang: Zhejiang University of Technology)
[24] He Y, Pan S K, Cheng L C, Luo J L and Yu J J 2019 J. Electron. Mater. 48 1574
[25] Wang T, Wei J Q, Zhang Z Q and Li F S 2013 Mater. Chin. 32 94
[26] Liu X M, Xie G Z, Xie N Y, Gao X, Chen J 2020 J. Mater. Sci.: Mater. Electron. 31 17502
[27] Wang G W, Zhang J M, Wang P, Wang T and Li F S 2020 J. Magn. Mater. Devices. 51 5
[28] Wang P, Zhang J M, Wang G W, Duan B F, Wang T and Li F S 2020 Appl. Phys. Lett. 116 112403
[29] Qiao L, Wen F S, Wei J Q, Wang J B and Li F S 2008 J. Appl. Phys. 103 063903
[30] Zuo W L, Qiao L, Chi X, Wang T and Li F S 2011 J. Alloys Compd. 509 6359
[31] Wang T, Zhang J M, Wang P, Qiao L, Tang L Y, Xie D S and Li F S 2016 J. Magn. Mater. Devices 47 7
[32] Wang T, Wang H D, Tan G G, Wang L and Qiao L 2015 IEEE Trans. Magn. 51 2800405
[33] Wang T, Han R, Tan G G, Wei J Q, Qiao L and Li F S 2012 J. Appl. Phys. 112 104903
[1] Synthesis, magnetic and electromagnetic wave absorption properties of planar anisotrop Y2Co17@SiO2 rare earth soft magnetic composites
Liang Qiao(乔亮), Cheng-Fa Tu(涂成发), Wei Wu(吴伟), Wen-Biao Wang(王文彪), Sheng-Yu Yang(杨晟宇), Sun Zhe(孙哲), Peng Wu(吴鹏), Jin-Bo Yang(杨金波), Chang-Sheng Wang(王常生), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2023, 32(5): 054202.
[2] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[3] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[4] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[5] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[6] Multiferroic and enhanced microwave absorption induced by complex oxide interfaces
Cuimei Cao(曹翠梅), Chunhui Dong(董春晖), Jinli Yao(幺金丽), Changjun Jiang(蒋长军). Chin. Phys. B, 2018, 27(1): 017503.
[7] Microwave absorption properties of Ag naowires/carbon black composites
Hai-Long Huang(黄海龙), Hui Xia(夏辉), Zhi-Bo Guo(郭智博), Yu Chen(陈羽), Hong-Jian Li(李宏建). Chin. Phys. B, 2017, 26(2): 025207.
[8] Theoretical calculation and experiment of microwave electromagnetic property of Ni(C) nanocapsules
Dan-Feng Zhang(张丹枫), Zhi-Feng Hao(郝志峰), Bi Zeng(曾碧), Yan-Nan Qian(钱艳楠), Ying-Xin Huang(黄颖欣), Zhen-Da Yang(杨振大). Chin. Phys. B, 2016, 25(4): 040201.
[9] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with gold nanoparticles
Fu Chen (付晨), He Da-Wei (何大伟), WangYong-Sheng (王永生), Fu Ming (富鸣), Geng Xin (耿欣), Zhuo Zu-Liang (卓祖亮). Chin. Phys. B, 2015, 24(8): 087801.
[10] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with Fe3O4 particles
Geng Xin (耿欣), He Da-Wei (何大伟), Wang Yong-Sheng (王永生), Zhao Wen (赵文), Zhou Yi-Kang (周亦康), Li Shu-Lei (李树磊). Chin. Phys. B, 2015, 24(2): 027803.
[11] Templated synthesis of highly ordered mesoporous cobalt ferrite and its microwave absorption properties
Li Guo-Min (力国民), Wang Lian-Cheng (王连成), Xu Yao (徐耀). Chin. Phys. B, 2014, 23(8): 088105.
[12] High microwave absorption performances for single-walled carbon nanotube-epoxy composites with ultra-low loadings
Liang Jia-Jie (梁嘉杰), Huang Yi (黄毅), Zhang Fan (张帆), Li Ning (李宁), Ma Yan-Feng (马延风), Li Fei-Fei (李飞飞), Chen Yong-Sheng (陈永胜). Chin. Phys. B, 2014, 23(8): 088802.
[13] The effects of static magnetic field on microwave absorption of hydrogen plasma in carbon nanotubes: A numerical study
Peng Zhi-Hua(彭志华), Gong Xue-Yu(龚学余), Peng Yan-Feng(彭延峰), Guo Yan-Chun(郭燕春), and Ning Yan-Tao(宁艳桃) . Chin. Phys. B, 2012, 21(7): 078102.
[14] Microwave reflection properties of planar anisotropy Fe50Ni50 powder/paraffin composites
Wei Jian-Qiang(位建强), Zhang Zhao-Qi(张钊琦), Han Rui(韩瑞), Wang Tao(王涛), and Li Fa-Shen(李发伸) . Chin. Phys. B, 2012, 21(3): 037601.
[15] Low field microwave absorption and magnetization process in CoFeNi electroplated wires
H. Garcìa-Miquel and G.V. Kurlyandskaya. Chin. Phys. B, 2008, 17(4): 1430-1435.
No Suggested Reading articles found!