Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 084203    DOI: 10.1088/1674-1056/accb47
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Nonlinear perturbation of a high-order exceptional point: Skin discrete breathers and the hierarchical power-law scaling

Hui Jiang(江慧), Enhong Cheng(成恩宏), Ziyu Zhou(周子榆), and Li-Jun Lang(郎利君)
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
Abstract  We study the nonlinear perturbation of a high-order exceptional point (EP) of the order equal to the system site number L in a Hatano-Nelson model with unidirectional hopping and Kerr nonlinearity. Notably, we find a class of discrete breathers that aggregate to one boundary, here named as skin discrete breathers (SDBs). The nonlinear spectrum of these SDBs shows a hierarchical power-law scaling near the EP. Specifically, the response of nonlinear energy to the perturbation is given by EmΓαm, where αm=3m-1 is the power with m=1,...,L labeling the nonlinear energy bands. This is in sharp contrast to the L-th root of a linear perturbation in general. These SDBs decay in a double-exponential manner, unlike the edge states or skin modes in linear systems, which decay exponentially. Furthermore, these SDBs can survive over the full range of nonlinearity strength and are continuously connected to the self-trapped states in the limit of large nonlinearity. They are also stable, as confirmed by a defined nonlinear fidelity of an adiabatic evolution from the stability analysis. As nonreciprocal nonlinear models may be experimentally realized in various platforms, such as the classical platform of optical waveguides, where Kerr nonlinearity is naturally present, and the quantum platform of optical lattices with Bose-Einstein condensates, our analytical results may inspire further exploration of the interplay between nonlinearity and non-Hermiticity, particularly on high-order EPs, and benchmark the relevant simulations.
Keywords:  skin discrete breather      hierarchical power-law scaling      double-exponential decay      non-Hermitian skin effect      high-order exceptional point      Kerr nonlinearity  
Received:  27 January 2023      Revised:  28 March 2023      Accepted manuscript online:  07 April 2023
PACS:  42.65.-k (Nonlinear optics)  
  05.90.+m (Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2022YFA1405304), the Key-Area Research and Development Program of Guangdong Province, China (Grant No.2019B030330001), and the Guangdong Provincial Key Laboratory (Grant No.2020B1212060066).
Corresponding Authors:  Li-Jun Lang     E-mail:  ljlang@scnu.edu.cn

Cite this article: 

Hui Jiang(江慧), Enhong Cheng(成恩宏), Ziyu Zhou(周子榆), and Li-Jun Lang(郎利君) Nonlinear perturbation of a high-order exceptional point: Skin discrete breathers and the hierarchical power-law scaling 2023 Chin. Phys. B 32 084203

[1] Eilbeck J C and Johansson M 2003 Localization and Energy Transfer in Nonlinear Systems, Proceedings of the Third Conference (New Jersey: World Scientific Publishing Company) Chapter: The discrete nonlinear Schrödinger equation, pp 44-67
[2] Flach S and Gorbach A V 2008 Phys. Rep. 467 1
[3] Ovchinnikov A A 1970 Sov. Phys. JETP 30 147
[4] Flach S and Willis C 1998 Phys. Rep. 295 181
[5] Bishop A, Kalosakas G, Rasmussen K and Kevrekidis P 2003 Chaos 13 588
[6] Tsironis G 2003 Chaos 13 657
[7] Campbell D K 2004 Nature 432 455
[8] Campbell D K, Flach S and Kivshar Y S 2004 Phys. Today 57 43
[9] Trías E, Mazo J J and Orlando T P 2000 Phys. Rev. Lett. 84 741
[10] Binder P, Abraimov D, Ustinov A V, Flach S and Zolotaryuk Y 2000 Phys. Rev. Lett. 84 745
[11] Sato M, Hubbard B E, Sievers A J, Ilic B and Craighead H G 2004 Europhys. Lett. 66 318
[12] Eisenberg H S, Silberberg Y, Morandotti R, Boyd A R and Aitchison J S 1998 Phys. Rev. Lett. 81 3383
[13] Fleischer J W, Segev M, Efremidis N K and Christodoulides D N 2003 Nature 422 147
[14] Sato M and Sievers A J 2004 Nature 432 486
[15] Ashida Y, Gong Z and Ueda M 2020 Adv. Phys. 69 249
[16] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[17] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
[18] Peng B, Ozdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang L 2014 Nat. Phys. 10 394
[19] Poli C, Bellec M, Kuhl U, Mortessagne F and Schomerus H 2015 Nat. Commun. 6 6710
[20] Li J, Harter A K, Liu J, de Melo L, Joglekar Y N and Luo L 2019 Nat. Commun. 10 855
[21] Ren Z, Liu D, Zhao E, He C, Pak K K, Li J and Jo G B 2022 Nat. Phys. 18 385
[22] Lee T E 2016 Phys. Rev. Lett. 116 133903
[23] Leykam D, Bliokh K Y, Huang C, Chong Y D and Nori F 2017 Phys. Rev. Lett. 118 040401
[24] Shen H, Zhen B and Fu L 2018 Phys. Rev. Lett. 120 146402
[25] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803
[26] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079
[27] Xiong Y 2018 J. Phys. Commun. 2 035043
[28] Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808
[29] Martinez Alvarez V M, Barrios Vargas J E and Foa Torres L E F 2018 Phys. Rev. B 97 121401
[30] Yin C, Jiang H, Li L, Lü R and Chen S 2018 Phys. Rev. A 97 052115
[31] Jin L and Song Z 2019 Phys. Rev. B 99 081103
[32] Borgnia D S, Kruchkov A J and Slager R J 2020 Phys. Rev. Lett. 124 056802
[33] Zhang K, Yang Z and Fang C 2020 Phys. Rev. Lett. 125 126402
[34] Kato T 1995 Perturbation Theory for Linear Operators (Berlin: Springer-Verlag)
[35] Heiss W D 2012 J. Phys. A: Math. Theor. 45 444016
[36] Bergholtz E J, Budich J C and Kunst F K 2021 Rev. Mod. Phys. 93 015005
[37] Uzdin R, Mailybaev A and Moiseyev N 2011 J. Phys. A: Math. Theor. 44 435302
[38] Berry M V and Uzdin R 2011 J. Phys. A: Math. Theor. 44 435303
[39] Graefe E M, Mailybaev A A and Moiseyev N 2013 Phys. Rev. A 88 033842
[40] Graefe E M and Korsch H J 2006 Czech. J. Phys. 56 1007
[41] Graefe E M, Korsch H J and Niederle A E 2010 Phys. Rev. A 82 013629
[42] Lang L J, Zhu S L and Chong Y D 2021 Phys. Rev. B 104 L020303
[43] Yuce C 2021 Phys. Lett. A 408 127484
[44] Wu Y P, Zhang G Q, Zhang C X, Xu J and Zhang D W 2021 Front. Phys. 17 42503
[45] Ramezanpour S and Bogdanov A 2021 Phys. Rev. A 103 043510
[46] Ezawa M 2022 Phys. Rev. B 105 125421
[47] Khedri A, Horn D and Zilberberg O 2022 arXiv:2208.11205 [cond-mat.str-el]
[48] Bahari B, Ndao A, Vallini F, Amili A E, Fainman Y and Kanté B 2017 Science 358 636
[49] Bandres M A, Wittek S, Harari G, Parto M, Ren J, Segev M, Christodoulides D N and Khajavikhan M 2018 Science 359 eaar4005
[50] Jürgensen M, Mukherjee S and Rechtsman M C 2021 Nature 596 63
[51] Hatano N and Nelson D R 1996 Phys. Rev. Lett. 77 570
[52] Hatano N and Nelson D R 1997 Phys. Rev. B 56 8651
[53] Okamoto K Fundamentals of Optical Waveguides 2nd edn (Amsterdam: Academic Press)
[54] Pethick C J and Smith H 2008 Bose-Einstein Condensation in Dilute Gases 2nd edn (Cambridge: Cambridge University Press)
[55] Carr J and Eilbeck J C 1985 Phys. Lett. A 109 201
[56] MacKay R and Sepulchre J A 1998 Physica D 119 148
[57] At or near the linear high-order exceptional point, the dynamics has its own scaling laws with the amplitude amplifying in a power-law fashion with respect to time, converging to the unique eigenvector at the exceptional point after a long time evolution. The relevant study is coming in our furture work.
[58] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[59] Song F, Yao S and Wang Z 2019 Phys. Rev. Lett. 123 170401
[60] Daley A J 2014 Adv. Phys. 63 77
[61] Witthaut D, Trimborn F, Hennig H, Kordas G, Geisel T and Wimberger S 2011 Phys. Rev. A 83 063608
[62] Dickson L E 1914 Elementary Theory of Equations (New York: John Wiley & Sons)
[1] Anomalous non-Hermitian dynamical phenomenon on the quantum circuit
Chenxiao Dong(董陈潇), Zhesen Yang(杨哲森), Jinfeng Zeng(曾进峰), and Jiangping Hu(胡江平). Chin. Phys. B, 2023, 32(7): 070305.
[2] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
[3] Filling up complex spectral regions through non-Hermitian disordered chains
Hui Jiang and Ching Hua Lee. Chin. Phys. B, 2022, 31(5): 050307.
[4] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[5] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[6] Non-Hermitian Weyl semimetals: Non-Hermitian skin effect and non-Bloch bulk-boundary correspondence
Xiaosen Yang(杨孝森), Yang Cao(曹阳), and Yunjia Zhai(翟云佳). Chin. Phys. B, 2022, 31(1): 010308.
[7] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[8] A new way to construct topological invariants of non-Hermitian systems with the non-Hermitian skin effect
J S Liu(刘建森), Y Z Han(韩炎桢), C S Liu(刘承师). Chin. Phys. B, 2020, 29(1): 010302.
[9] Surface plasmon polariton at the interface of dielectric and graphene medium using Kerr effect
Bakhtawar, Muhammad Haneef, B A Bacha, H Khan, M Atif. Chin. Phys. B, 2018, 27(11): 114215.
[10] Enhanced Kerr nonlinearity in a quantized four-level graphene nanostructure
Ghahraman Solookinejad, M Panahi, E Ahmadi, Seyyed Hossein Asadpour. Chin. Phys. B, 2016, 25(7): 074204.
[11] Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and photon-number-resolving measurement
Jino Heo, Chang-Ho Hong, Dong-Hoon Lee, Hyung-Jin Yang. Chin. Phys. B, 2016, 25(2): 020306.
[12] Efficient entanglement concentration for arbitrary less-entangled NOON state assisted by single photons
Lan Zhou(周澜) and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2016, 25(2): 020308.
[13] Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity
Jino Heo, Chang-Ho Hong, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(5): 050304.
[14] Rectification effect in asymmetric Kerr nonlinear medium
Liu Wan-Guo (刘晚果), Pan Feng-Ming (潘风明), Cai Li-Wei (蔡力伟). Chin. Phys. B, 2014, 23(6): 064213.
[15] Generation of hyperentangled four-photon cluster state via cross-Kerr nonlinearity
Yan Xiang (闫香), Yu Ya-Fei (於亚飞), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2014, 23(6): 060306.
No Suggested Reading articles found!