Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 084201    DOI: 10.1088/1674-1056/acaa25
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Real-time and high-transmission middle-infrared optical imaging system based on a pixel-wise metasurface micro-polarization array

Lifeng Ma(马丽凤)1,†, Shan Du(杜杉)1,†, Jun Chang(常军)1,‡, Weilin Chen(陈蔚霖)1, Chuhan Wu(武楚晗)2, Xinxin Shi(石鑫鑫)1, Yi Huang(黄翼)1, Yue Zhong(钟乐)1, and Quanquan Mu(穆全全)3
1. School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China;
2. Information Science Academy, China Electronics Technology Group Corporation, Beijing 100098, China;
3. State Key Laboratory of Applied Optics, China Changchun Institute of Optics, Fine Mechanics and Physics, Changchun 130033, China
Abstract  Real-time polarization medium-wave infrared (MIR) optical imaging systems enable the acquisition of infrared and polarization information for a target. At present, real-time polarization MIR devices face the following problems: poor real-time performance, low transmission and high requirements for fabrication and integration. Herein, we aim to improve the performance of real-time polarization imaging systems in the MIR waveband and solve the above-mentioned defects. Therefore, we propose a MIR polarization imaging system to achieve real-time polarization-modulated imaging with high transmission as well as improved performance based on a pixel-wise metasurface micro-polarization array (PMMPA). The PMMPA element comprises several linear polarization (LP) filters with different polarization angles. The optimization results demonstrate that the transmittance of the center field of view for the LP filters is up to 77% at a wavelength of 4.0 μ and an extinction ratio of 88 dB. In addition, a near-diffraction-limited real-time MIR imaging optical system is designed with a field of view of 5° and an F-number of 2. The simulation results show that an MIR polarization imaging system with excellent real-time performance and high transmission is achieved by using the optimized PMMPA element. Therefore, the method is compatible with the available optical system design technologies and provides a way to realize real-time polarization imaging in MIR wavebands.
Keywords:  real-time      middle infrared optical imaging system      metasurface      polarization array  
Received:  09 June 2022      Revised:  19 October 2022      Accepted manuscript online:  09 December 2022
PACS:  42.15.-i (Geometrical optics)  
  42.25.Ja (Polarization)  
  42.15.Eq (Optical system design)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: Project supported by the National Key R&D Program of China(Grant No.SKLA02020001A05).
Corresponding Authors:  Jun Chang     E-mail:  optics_chang@126.com

Cite this article: 

Lifeng Ma(马丽凤), Shan Du(杜杉), Jun Chang(常军), Weilin Chen(陈蔚霖), Chuhan Wu(武楚晗), Xinxin Shi(石鑫鑫), Yi Huang(黄翼), Yue Zhong(钟乐), and Quanquan Mu(穆全全) Real-time and high-transmission middle-infrared optical imaging system based on a pixel-wise metasurface micro-polarization array 2023 Chin. Phys. B 32 084201

[1] Jin L W, Claborn K A, Kurimoto M, Geday M A, Maezawa I, Sohraby F, Estrada M, Kaminksy W and Kahr B 2003 Proc. Natl. Acad. Sci. USA 100 15294
[2] Cui X Y, Nichols S M, Arteaga O, Freudenthal J, Paula F and Shtukenberg A G 2016 Am. Chem. Soc. 138 12211
[3] Zhao H J, Li Y S, Jia G R, Li N, Ji Z and Gu J R 2018 Appl. Opt. 57 6840
[4] Tyo J S, Goldstein D H, Chenault D B and Shaw J A 2006 Appl. Opt. 45 5451
[5] Tyo J S, Goldstein D L, Chenault D B and Shaw J A 2006 Appl. Opt. 45 5453
[6] Li S J, Jiang H L, Zhu J P, Duan J, Fu Q, Fu Y G and Dong K Y 2013 Chin. Opt. 6 803
[7] Maruyama Y, Terada T, Yamazaki T, Uesaka Y and Ezaki T 2018 IEEE Trans. Electron Devices 65 2544
[8] Zhang J, Luo H, Hui B and Chang Z 2016 Opt. Express 24 20799
[9] Harnett C K and Craighead H G 2002 Appl. Opt. 41 1291
[10] Tyo J S 2006 Opt. Lett. 31 2984
[11] Liu X, Chang J, Zhong Y, Feng S, Song D L and Hu Y Y 2020 J. Mod. Opt. 67 462
[12] Gruev V, Perkins R and York T 2010 Opt. Express 18 19087
[13] Gruev V, Ortu A, Lazarus N, Van der Spiegel J and Engheta N 2007 Opt. Express 15 4994
[14] Zhao H J, Li Y S, Jia G R, Li N, Ji Z and Gu J R 2018 Appl. Opt 57 6840
[15] Liu X, Chang J, Feng S, Mu, Y, Wang X and Xu Z P 2019 Chin. Phys. B 28 084201
[16] Zhao Y Q, Zhang L, Zhang D and Pan Q 2009 Comput. Vis. Image Underst. 113 855
[17] Yang Z Y, Zhao M, Lu P X and Lu Y F 2010 Opt. Lett. 35 2588
[18] Frank B, Yin X, Schäferling M, Zhao J, Hein S M, Braun P V and Giessen H 2013 ACS Nano 7 6321
[19] Zhang M, Pacheco-Peña V, Yu Y, Chen W, Greybush N J, Stein A, Engheta N, Murray C B and Kagan C R 2018 Nano Lett. 18 7389
[20] Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G, Linden S and Wegener M 2009 Science 325 1513
[21] Decker M, Klein M W, Wegener M and Linden S 2007 Opt. Lett. 32 856
[22] Kwon D H, Werner P L and Werner D H 2008 Opt. Express 16 11802
[23] Afshinmanesh F, White J S, Cai W and Brongersma M L 2012 Nanophotonics 1 125
[24] Ye W, Yuan X, Guo C, Zhang J, Yang B and Zhang S 2017 Phys. Rev. Appl. 7 054003
[25] Chen W, Abeysinghe D C, Nelson R L and Zhan Q W 2010 Nano Lett. 10 2075
[26] Rubin N A, Aversa G D, Chevalier P and Capasso F 2019 Science 365 eaax1839
[27] Chen C, Wang Y, Jiang M W, Wang J, Guan J, Zhang B S, Wang L, Lin J and Jin P 2020 Nano Lett. 20 5428
[28] Yao Z and Chen Y H 2021 Opt. Express 29 3904
[1] High efficiency and high transmission asymmetric polarization converter with chiral metasurface in visible and near-infrared region
Yuhang Gao(高雨航), Yu Tian(田宇), Qingguo Du(杜庆国), Yuanli Wang(王原丽), Qin Fu(付琴), Qiang Bian(卞强), Zhengying Li(李政颖), Shuai Feng(冯帅), and Fangfang Ren(任芳芳). Chin. Phys. B, 2023, 32(7): 074201.
[2] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[3] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[7] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[8] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[9] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[10] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[11] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[12] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[13] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[14] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[15] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
No Suggested Reading articles found!