Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 037601    DOI: 10.1088/1674-1056/21/3/037601

Microwave reflection properties of planar anisotropy Fe50Ni50 powder/paraffin composites

Wei Jian-Qiang(位建强), Zhang Zhao-Qi(张钊琦), Han Rui(韩瑞), Wang Tao(王涛), and Li Fa-Shen(李发伸)
Institute of Applied Magnetics, Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China
Abstract  The reflection properties of planar anisotropy Fe50Ni50 powder/paraffin composites have been studied in the microwave frequency range. The permeability of Fe50Ni50 powder/paraffin composites is greatly enhanced by introducing the planar anisotropy, and can be further enhanced by using a rotational orientation method. The complex permeability can be considered as the superposition of two types of magnetic resonance. The resonance peak at high frequency is attributed to the natural resonance, while the peak at low frequency is attributed to the domain-wall resonance. The simulated results of the microwave reflectivity show that the matching thickness, peak frequency, permeability, and permittivity are closely related to the quarter wavelength matching condition. The Fe50Ni50 powder/paraffin composites can be attractive candidates for thinner microwave absorbers in the L-band (1-2 GHz).
Keywords:  reflection property      complex permeability      microwave absorption  
Received:  14 July 2011      Revised:  30 October 2011      Accepted manuscript online: 
PACS:  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  75.30.Gw (Magnetic anisotropy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10774061), the Defense Industrial Technology Development Program, China (Grant No. A1420080174), and the Fundamental Research Funds for the Central Universities.
Corresponding Authors:  Li Fa-Shen,     E-mail:

Cite this article: 

Wei Jian-Qiang(位建强), Zhang Zhao-Qi(张钊琦), Han Rui(韩瑞), Wang Tao(王涛), and Li Fa-Shen(李发伸) Microwave reflection properties of planar anisotropy Fe50Ni50 powder/paraffin composites 2012 Chin. Phys. B 21 037601

[1] Yan J F, You T G, Zhang Z Y, Tian J X, Yun J N and Zhao W 2011 em Chin. Phys. B 20 048102
[2] Lu H P, Han M G, Cai L and Deng L J 2011 Chin. Phys. B 20 060701
[3] Shirakata Y, Hidaka N, Ishitsuka M, Teramoto A and Ohmi T 2008 IEEE Trans. Magn. 44 2100
[4] Zhang B H, Lu G, Feng Y, Xiong J and Lu H X 2006 J. Magn. Magn. Mater. 299 205
[5] Kong I, Ahmad S H, Abdullah M H, Hui D, Yusoff A N and Puryanti D 2010 J. Magn. Magn. Mater. 322 3401
[6] Olmedo L, Hourquebie P and Jousse F 1993 Adv. Mater. 5 373
[7] Wei J Q, Wang J B, Liu Q F, Qiao L, Wang T and Li F S 2010 J. Phys. D: Appl. Phys. 43 115001
[8] Kim D Y, Chung Y C, Kang T W and Kim H C 1996 IEEE Trans. Magn. 32 555
[9] Xue D S, Li F S, Fan X L and Wen F S 2008 Chin. Phys. Lett. 25 4120
[10] Snoek J L 1948 Physica 14 207
[11] Wei J Q, Zhang Z Q, Wang B C, Wang T and Li F S 2010 J. Appl. Phys. 108 123908
[12] Smit J and Wijn H P J 1959 Ferrites (N. V. Philips' Gloeilampenfabrieken Eindhoven)
[13] Li Z W, Lin G Q and Kong L B 2008 Magnetics IEEE Tran. on Commun. 44 2255
[14] Walser R K, Win W and Valanju P M 1998 IEEE Trans. Magn. 34 1390
[15] Elsukov E P, Rozanov K N, Lomaeva S F, Osipov A V, Petrov D A, Surnin D V, Chulkina A A and Shuravin A S 2007 Phys. Met. Metallogr. 104 248
[16] Lagarkov A N and Rozanov K N 2009 J. Magn. Magn. Mater. 321 2082
[17] Lee K S, Yun Y C, Kim S W K and Kim S S 2008 J. Appl. Phys. 103 07E504
[18] Yang W F, Qiao L, Wei J Q, Zhang Z Q, Wang T and Li F S 2010 J. Appl. Phys. 107 033913-5
[19] Kasagi T, Tsutaoka T and Hatakeyama K 2006 Appl. Phys. Lett. 88 172502
[20] Li Z W, Kong L B and Yang Z H 2009 J. Appl. Phys. 105 113912-8
[21] Li Z W, Lin G Q, Wu Y P and Kong L B 2009 IEEE Trans. Magn. 45 670
[22] Tsutaoka T 2003 J. Appl. Phys. 93 2789
[23] Chevalier A and Floc'h M Le 2001 J. Appl. Phys. 90 3462
[24] Abbas S M, Dixit A K, Chatterjee R and Goel T C 2007 J. Magn. Magn. Mater. 309 20
[1] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[2] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[3] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[4] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[5] Multiferroic and enhanced microwave absorption induced by complex oxide interfaces
Cuimei Cao(曹翠梅), Chunhui Dong(董春晖), Jinli Yao(幺金丽), Changjun Jiang(蒋长军). Chin. Phys. B, 2018, 27(1): 017503.
[6] Microwave absorption properties of Ag naowires/carbon black composites
Hai-Long Huang(黄海龙), Hui Xia(夏辉), Zhi-Bo Guo(郭智博), Yu Chen(陈羽), Hong-Jian Li(李宏建). Chin. Phys. B, 2017, 26(2): 025207.
[7] Theoretical calculation and experiment of microwave electromagnetic property of Ni(C) nanocapsules
Dan-Feng Zhang(张丹枫), Zhi-Feng Hao(郝志峰), Bi Zeng(曾碧), Yan-Nan Qian(钱艳楠), Ying-Xin Huang(黄颖欣), Zhen-Da Yang(杨振大). Chin. Phys. B, 2016, 25(4): 040201.
[8] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with gold nanoparticles
Fu Chen (付晨), He Da-Wei (何大伟), WangYong-Sheng (王永生), Fu Ming (富鸣), Geng Xin (耿欣), Zhuo Zu-Liang (卓祖亮). Chin. Phys. B, 2015, 24(8): 087801.
[9] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with Fe3O4 particles
Geng Xin (耿欣), He Da-Wei (何大伟), Wang Yong-Sheng (王永生), Zhao Wen (赵文), Zhou Yi-Kang (周亦康), Li Shu-Lei (李树磊). Chin. Phys. B, 2015, 24(2): 027803.
[10] High microwave absorption performances for single-walled carbon nanotube-epoxy composites with ultra-low loadings
Liang Jia-Jie (梁嘉杰), Huang Yi (黄毅), Zhang Fan (张帆), Li Ning (李宁), Ma Yan-Feng (马延风), Li Fei-Fei (李飞飞), Chen Yong-Sheng (陈永胜). Chin. Phys. B, 2014, 23(8): 088802.
[11] Templated synthesis of highly ordered mesoporous cobalt ferrite and its microwave absorption properties
Li Guo-Min (力国民), Wang Lian-Cheng (王连成), Xu Yao (徐耀). Chin. Phys. B, 2014, 23(8): 088105.
[12] The effects of static magnetic field on microwave absorption of hydrogen plasma in carbon nanotubes: A numerical study
Peng Zhi-Hua(彭志华), Gong Xue-Yu(龚学余), Peng Yan-Feng(彭延峰), Guo Yan-Chun(郭燕春), and Ning Yan-Tao(宁艳桃) . Chin. Phys. B, 2012, 21(7): 078102.
[13] Influence of shape anisotropy on microwave complex permeability in carbonyl iron flakes/epoxy resin composites
Wen Fu-Sheng(温福昇), Qiao Liang(乔亮), Zhou Dong(周栋), Zuo Wen-Liang(左文亮), Yi Hai-Bo(伊海波), and Li Fa-Shen (李发伸). Chin. Phys. B, 2008, 17(6): 2263-2267.
[14] Low field microwave absorption and magnetization process in CoFeNi electroplated wires
H. Garcìa-Miquel and G.V. Kurlyandskaya. Chin. Phys. B, 2008, 17(4): 1430-1435.
[15] Investigation of photoelectron temporal characteristics in silver halide microcrystals using the microwave absorption technique
Yang Shao-Peng (杨少鹏), Fu Guang-Sheng (傅广生), Dai Xiu-Hong (代秀红), Dong Guo-Yi (董国义), Li Xiao-Wei (李晓苇), Han Li (韩理). Chin. Phys. B, 2004, 13(8): 1326-1329.
No Suggested Reading articles found!