Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067701    DOI: 10.1088/1674-1056/ab81fb
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers

Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫)
Xi'an Research Institute of High Technology, Xi'an 710025, China
Abstract  The SrFe12O19@carbonyl iron (CI) core-shell composites used in microwave absorption are prepared by the metal-organic chemical vapor deposition (MOCVD). The x-ray diffractometer, scanning electron microscope, energy dispersive spectrometer, and vector network analyzer are used to characterize the structural, electromagnetic, and absorption properties of the composites. The results show that the SrFe12O19@CI composites with a core-shell structure could be successfully prepared under the condition: deposition temperatures above 180 ℃, deposition time 30 min, and gas flow rate 30 mL/min. The electromagnetic properties of the composites change significantly, and their absorption capacities are improved. Of the obtained samples, those samples prepared at a deposition temperature of 180 ℃ exhibit the best absorption performance. The reflection loss of SrFe12O19@CI (180 ℃) with 1.5 mm-2.5 mm in thickness is less than -10 dB in a frequency range of 8 GHz-18 GHz, which covers the whole X band and Ku band.
Keywords:  SrFe12O19      carbonyl iron      electromagnetic properties      microwave absorption  
Received:  16 December 2019      Revised:  24 February 2020      Accepted manuscript online: 
PACS:  77.84.Lf (Composite materials)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  62.20.mm (Fracture)  
  81.05.Lg (Polymers and plastics; rubber; synthetic and natural fibers; organometallic and organic materials)  
Corresponding Authors:  Yuan Liu     E-mail:  liuyuanbixue@163.com

Cite this article: 

Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫) Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers 2020 Chin. Phys. B 29 067701

[1] Liu Y, Liu X X, H E C P and Wang W 2018 Surf. Technol. 47 72 (in Chinese)
[2] Yu J Y, Chi F L, Sun Y P, Guo J J and Liu X G 2018 Ceram. Int. 44 19207
[3] Liu X G, Cui C Y, Yu J Y, Sun Y P and Xia A L 2018 Mater. Lett. 225 1
[4] Liu X G, Yu J Y, Cui C Y, Sun Y P, Li X L and Li Z X 2018 J. Phys. D: Appl. Phys. 51 265002
[5] Liu X G, Ran S L, Yu J Y and Sun Y P 2018 J. Alloys Compd. 765 943
[6] Bobzin K, Bolelli G, Bruehl M, Hujanen A, Lintunen P, Lisjak D, Gyergyek S and Lusvarghi L 2011 J. Eur. Ceram. Soc. 31 1439
[7] Sachin T, Himanshu B B, Ramesh C A, Vijaya A and Trilok C S 2011 Trans. Indian Inst. Met. 64 607
[8] Chen W, Liu Q Y, Zhu X X and Fu M 2017 RSC Adv. 7 40650
[9] Liu Y, Liu X X and Wang X J 2014 J. Alloys Compd. 584 249
[10] Liu Y, Liu X X, Li R and Li Y 2015 RSC Adv. 5 18660
[11] Zhou Y Y, Xie H, Zhou W C and Ren Z W 2018 J. Magn. Magn. Mater. 446 143
[12] Zuo Y X, Yao Z J, Lin H Y, Zhou J T, Guo X L and Cai H S 2019 J. Mater. Sci. 54 11827
[13] Cheng Y L, Dai J M, Wu D J and Sun Y P 2010 J. Magn. Magn. Mater. 322 97
[14] Pan X, Qiu J and Gu M 2007 J. Mater. Sci. 42 2086
[15] Pan X, Shen H, Qiu J and Gu M Y 2007 Mater. Chem. Phys. 101 505
[16] Wang R, Wan Y Z, He F, Qi Y, You W and Luo H L 2012 Appl. Surf. Sci. 258 3007
[17] Manasevit H M 1968 Appl. Phys. Lett. 12 156
[18] Lacrevaz T, Fléchet B, Farcy A, Torres J, Gros-Jean M, Bermond C, VoaO.Cueto T T, Blampey B, Angénieux G, Piquet J and Crécy de F 2006 Microelectron. Eng. 83 2184
[19] Jian Z and Bo C 2017 J. Mater. Sci. - Mater. Electron. 28 1
[20] Iqbal N, Wang X, Babar A A, Zainab G, Yu J and Ding B 2017 Sci. Rep. 7 15153
[21] Li G M, Wang C L, Li W X, Ding R M and Xu Y 2014 Phys. Chem. Chem. Phys. 16 12385
[22] Qing Y, Zhou W, Luo F and Zhu D M 2010 Carbon 48 4074
[23] Zeng M, Zhang X X, Yu R H, Zhao D L, Zhang Y H and Wang X L 2014 Mater. Sci. Eng. B 185 21
[24] Naito Y and Suetake K 1971 IEEE Trans. Microwave Theory Tech. 19 65
[25] Meshram M R, Agrawal N K, Bharoti Sinha and Misra P S 2004 J. Magn. Magn. Mater. 271 207
[1] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[2] Hysteresis loss reduction in self-bias FeSi/SrFe12O19 soft magnetic composites
Shuangjiu Feng(冯双久), Jiangli Ni(倪江利), Feng Hu(胡锋), Xucai Kan(阚绪材), Qingrong Lv(吕庆荣), and Xiansong Liu(刘先松). Chin. Phys. B, 2022, 31(2): 027503.
[3] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[4] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[5] Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties
Wei-Qi Yu(余维琪), Yi-Chen Qiu(邱怡宸), Hong-Jun Xiao(肖红君), Hai-Tao Yang(杨海涛), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 108103.
[6] Multiferroic and enhanced microwave absorption induced by complex oxide interfaces
Cuimei Cao(曹翠梅), Chunhui Dong(董春晖), Jinli Yao(幺金丽), Changjun Jiang(蒋长军). Chin. Phys. B, 2018, 27(1): 017503.
[7] Microwave absorption properties of Ag naowires/carbon black composites
Hai-Long Huang(黄海龙), Hui Xia(夏辉), Zhi-Bo Guo(郭智博), Yu Chen(陈羽), Hong-Jian Li(李宏建). Chin. Phys. B, 2017, 26(2): 025207.
[8] Theoretical calculation and experiment of microwave electromagnetic property of Ni(C) nanocapsules
Dan-Feng Zhang(张丹枫), Zhi-Feng Hao(郝志峰), Bi Zeng(曾碧), Yan-Nan Qian(钱艳楠), Ying-Xin Huang(黄颖欣), Zhen-Da Yang(杨振大). Chin. Phys. B, 2016, 25(4): 040201.
[9] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with gold nanoparticles
Fu Chen (付晨), He Da-Wei (何大伟), WangYong-Sheng (王永生), Fu Ming (富鸣), Geng Xin (耿欣), Zhuo Zu-Liang (卓祖亮). Chin. Phys. B, 2015, 24(8): 087801.
[10] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with Fe3O4 particles
Geng Xin (耿欣), He Da-Wei (何大伟), Wang Yong-Sheng (王永生), Zhao Wen (赵文), Zhou Yi-Kang (周亦康), Li Shu-Lei (李树磊). Chin. Phys. B, 2015, 24(2): 027803.
[11] Templated synthesis of highly ordered mesoporous cobalt ferrite and its microwave absorption properties
Li Guo-Min (力国民), Wang Lian-Cheng (王连成), Xu Yao (徐耀). Chin. Phys. B, 2014, 23(8): 088105.
[12] High microwave absorption performances for single-walled carbon nanotube-epoxy composites with ultra-low loadings
Liang Jia-Jie (梁嘉杰), Huang Yi (黄毅), Zhang Fan (张帆), Li Ning (李宁), Ma Yan-Feng (马延风), Li Fei-Fei (李飞飞), Chen Yong-Sheng (陈永胜). Chin. Phys. B, 2014, 23(8): 088802.
[13] The effects of static magnetic field on microwave absorption of hydrogen plasma in carbon nanotubes: A numerical study
Peng Zhi-Hua(彭志华), Gong Xue-Yu(龚学余), Peng Yan-Feng(彭延峰), Guo Yan-Chun(郭燕春), and Ning Yan-Tao(宁艳桃) . Chin. Phys. B, 2012, 21(7): 078102.
[14] Microwave reflection properties of planar anisotropy Fe50Ni50 powder/paraffin composites
Wei Jian-Qiang(位建强), Zhang Zhao-Qi(张钊琦), Han Rui(韩瑞), Wang Tao(王涛), and Li Fa-Shen(李发伸) . Chin. Phys. B, 2012, 21(3): 037601.
[15] Effect of Mn-doping on the growth mechanism and electromagnetic properties of chrysanthemum-like ZnO nanowire clusters
Yan Jun-Feng(闫军锋), You Tian-Gui(游天桂), Zhang Zhi-Yong(张志勇), Tian Jiang-Xiao(田江晓), Yun Jiang-Ni(贠江妮), and Zhao Wu(赵武) . Chin. Phys. B, 2011, 20(4): 048102.
No Suggested Reading articles found!