Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 088802    DOI: 10.1088/1674-1056/23/8/088802
SPECIAL TOPI—International Conference on Nanoscience & Technology, China 2013 Prev   Next  

High microwave absorption performances for single-walled carbon nanotube-epoxy composites with ultra-low loadings

Liang Jia-Jie (梁嘉杰), Huang Yi (黄毅), Zhang Fan (张帆), Li Ning (李宁), Ma Yan-Feng (马延风), Li Fei-Fei (李飞飞), Chen Yong-Sheng (陈永胜)
Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Center for Nanoscale Science and Technology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
Abstract  Microwave-absorbing polymeric composites based on single-walled carbon nanotubes (SWNTs) are fabricated via a simple yet versatile method, and these SWNT-epoxy composites exhibit very impressive microwave absorption performances in a range of 2 GHz-18 GHz. For instance, a maximum absorbing value as high as 28 dB can be achieved for each of these SWNT-epoxy composites (1.3-mm thickness) with only 1 wt% loading of SWNTs, and about 4.8 GHz bandwidth, corresponding to a microwave absorption performance higher than 10 dB, is obtained. Furthermore, such low and appropriate loadings of SWNTs also enhance the mechanical strength of the composite. It is suggested that these remarkable results are mainly attributable to the excellent intrinsic properties of SWNTs and their homogeneous dispersion state in the polymer matrix.
Keywords:  microwave absorption      single-walled carbon nanotube-epoxy composites      ultra-low loadings  
Received:  04 September 2013      Revised:  14 April 2014      Accepted manuscript online: 
PACS:  88.30.rh (Carbon nanotubes)  
  52.70.Gw (Radio-frequency and microwave measurements)  
  95.85.Bh (Radio, microwave (>1 mm))  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2012CB933401 and 2014CB643502) and the National Natural Science Foundation of China (Grant Nos. 21374050, 51273093, and 51373078).
Corresponding Authors:  Huang Yi, Chen Yong-Sheng     E-mail:  yihuang@nankai.edu.cn;yschen99@nankai.edu.cn

Cite this article: 

Liang Jia-Jie (梁嘉杰), Huang Yi (黄毅), Zhang Fan (张帆), Li Ning (李宁), Ma Yan-Feng (马延风), Li Fei-Fei (李飞飞), Chen Yong-Sheng (陈永胜) High microwave absorption performances for single-walled carbon nanotube-epoxy composites with ultra-low loadings 2014 Chin. Phys. B 23 088802

[1] Liu Z F, Bai G, Huang Y, Li F F, Ma Y F, Guo T Y, He X B, Lin X, Gao H J and Chen Y S 2007 J. Phys. Chem. C 111 13696
[2] Tang N J, Zhong W, Au C T, Yang Y, Han M G, Lin K J and Du Y W 2008 J. Phys. Chem. C 112 19316
[3] Fan Z J, Luo G H, Zhang Z F, Zhou L and Wei F 2006 Matet. Sci. Eng. B: Solid 132 85
[4] Jin H B, Li D, Cao M S, Dou Y K, Chen T, Wen B and Simeon A 2011 Chin. Phys. Lett. 28 037701
[5] Che R C, Peng L M, Duan X F, Chen Q and Liang X L 2004 Adv. Mater. 16 401
[6] Tang N J, Yang Y, Lin K J, Zhong W, Au C T and Du Y W 2008 J. Phys. Chem. C 112 10061
[7] Che R C, Zhi C Y, Liang C Y and Zhou X G 2006 Appl. Phys. Lett. 88 033105
[8] Qi X S, Deng Y, Zhong W, Yang Y, Qin C A, Au C and Du Y W 2010 J. Phys. Chem. C 114 808
[9] Dresselhaus M S 2004 Nature 432 959
[10] Martel R, Schmidt T, Shea H R, Hertel T and Avouris P 1998 Appl. Phys. Lett. 73 2447
[11] Liang J, Xu Y and Sui D 2010 J. Phys. Chem. C 114 17465
[12] Baughman R H, Zakhidov A A and de Heer W A 2002 Science 297 787
[13] Huang L, Huang Y and Liang J 2011 Nano Res. 4 675684
[14] Li N, Huang Y, Du F, He X B, Lin X, Gao H J, Ma Y F, Li F F, Chen Y S and Eklund P C 2006 Nano Lett. 6 1141
[15] Gao J B, Itkis M E, Yu A P, Bekyarova E, Zhao B and Haddon R C 2005 J. Am. Chem. Soc. 127 3847
[16] Kim B, Lee J and Yu I S 2003 J. Appl. Phys. 94 6724
[17] Garboczi E J, Snyder K A, Douglas J F and Thorpe M F 1995 Phys. Rev. E 52 819
[18] Bryning M B, Islam M F, Kikkawa J M and Yodh A G 2005 Adv. Mater. 17 1186
[19] Chatterjee T, Yurekli K, Hadjiev V G and Krishnamoorti R 2005 Adv. Funct. Mater. 15 1832
[20] Sen R, Zhao B, Perea D, Itkis M E, Hu H, Love J, Bekyarova E and Haddon R C 2004 Nano Lett. 4 459
[21] Grimes C A, Mungle C, Kouzoudis D, Fang S and Eklund P C 2000 Chem. Phys. Lett. 319 460
[22] Grunlan J C, Mehrabi A R, Bannon M V and Bahr J L 2004 Adv. Mater. 16 150
[23] Michielssen E, Sajer J M, Ranjithan S and Mittra R 1993 IEEE T. Microwave Theory 41 1024
[24] Yusoff A N, Abdullah M H, Ahmad S H, Jusoh S F, Mansor A A and Hamid S A A 2002 J. Appl. Phys. 92 876
[1] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[2] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[3] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[4] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[5] Multiferroic and enhanced microwave absorption induced by complex oxide interfaces
Cuimei Cao(曹翠梅), Chunhui Dong(董春晖), Jinli Yao(幺金丽), Changjun Jiang(蒋长军). Chin. Phys. B, 2018, 27(1): 017503.
[6] Microwave absorption properties of Ag naowires/carbon black composites
Hai-Long Huang(黄海龙), Hui Xia(夏辉), Zhi-Bo Guo(郭智博), Yu Chen(陈羽), Hong-Jian Li(李宏建). Chin. Phys. B, 2017, 26(2): 025207.
[7] Theoretical calculation and experiment of microwave electromagnetic property of Ni(C) nanocapsules
Dan-Feng Zhang(张丹枫), Zhi-Feng Hao(郝志峰), Bi Zeng(曾碧), Yan-Nan Qian(钱艳楠), Ying-Xin Huang(黄颖欣), Zhen-Da Yang(杨振大). Chin. Phys. B, 2016, 25(4): 040201.
[8] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with gold nanoparticles
Fu Chen (付晨), He Da-Wei (何大伟), WangYong-Sheng (王永生), Fu Ming (富鸣), Geng Xin (耿欣), Zhuo Zu-Liang (卓祖亮). Chin. Phys. B, 2015, 24(8): 087801.
[9] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with Fe3O4 particles
Geng Xin (耿欣), He Da-Wei (何大伟), Wang Yong-Sheng (王永生), Zhao Wen (赵文), Zhou Yi-Kang (周亦康), Li Shu-Lei (李树磊). Chin. Phys. B, 2015, 24(2): 027803.
[10] Templated synthesis of highly ordered mesoporous cobalt ferrite and its microwave absorption properties
Li Guo-Min (力国民), Wang Lian-Cheng (王连成), Xu Yao (徐耀). Chin. Phys. B, 2014, 23(8): 088105.
[11] The effects of static magnetic field on microwave absorption of hydrogen plasma in carbon nanotubes: A numerical study
Peng Zhi-Hua(彭志华), Gong Xue-Yu(龚学余), Peng Yan-Feng(彭延峰), Guo Yan-Chun(郭燕春), and Ning Yan-Tao(宁艳桃) . Chin. Phys. B, 2012, 21(7): 078102.
[12] Microwave reflection properties of planar anisotropy Fe50Ni50 powder/paraffin composites
Wei Jian-Qiang(位建强), Zhang Zhao-Qi(张钊琦), Han Rui(韩瑞), Wang Tao(王涛), and Li Fa-Shen(李发伸) . Chin. Phys. B, 2012, 21(3): 037601.
[13] Low field microwave absorption and magnetization process in CoFeNi electroplated wires
H. Garcìa-Miquel and G.V. Kurlyandskaya. Chin. Phys. B, 2008, 17(4): 1430-1435.
[14] Investigation of photoelectron temporal characteristics in silver halide microcrystals using the microwave absorption technique
Yang Shao-Peng (杨少鹏), Fu Guang-Sheng (傅广生), Dai Xiu-Hong (代秀红), Dong Guo-Yi (董国义), Li Xiao-Wei (李晓苇), Han Li (韩理). Chin. Phys. B, 2004, 13(8): 1326-1329.
[15] Investigation of the photoelectron decay of silver halide microcrystal
Yang Shao-Peng (杨少鹏), Fu Guang-Sheng (傅广生), Dong Guo-Yi (董国义), Li Xiao-Wei (李晓苇), Han Li (韩理). Chin. Phys. B, 2003, 12(12): 1435-1439.
No Suggested Reading articles found!