Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 070306    DOI: 10.1088/1674-1056/acce93
RAPID COMMUNICATION Prev   Next  

Periodic electron oscillation in coupled two-dimensional lattices

Yan-Yan Lu(陆艳艳), Chao Wang(王超), Jin-Yi Jiang(将金益), Jie Liu(刘洁), and Jian-Xin Zhong(钟建新)
Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, China
Abstract  We study the time evolution of electron wavepacket in the coupled two-dimensional (2D) lattices with mirror symmetry, utilizing the tight-binding Hamiltonian framework. We show analytically that the wavepacket of an electron initially located on one atomic layer in the coupled 2D square lattices exhibits a periodic oscillation in both the transverse and longitudinal directions. The frequency of this oscillation is determined by the strength of the interlayer hopping. Additionally, we provide numerical evidence that a damped periodic oscillation occurs in the coupled 2D disordered lattices with degree of disorder W, with the decay time being inversely proportional to the square of W and the frequency change being proportional to the square of W, which is similar to the case in the coupled 1D disordered lattices. Our numerical results further confirm that the periodic and damped periodic electron oscillations are universal, independent of lattice geometry, as demonstrated in AA-stacked bilayer and tri-layer graphene systems. Unlike the Bloch oscillation driven by electric fields, the periodic oscillation induced by interlayer coupling does not require the application of an electric field, has an ultrafast periodicity much shorter than the electron decoherence time in real materials, and can be tuned by adjusting the interlayer coupling. Our findings pave the way for future observation of periodic electron oscillation in material systems at the atomic scale.
Keywords:  quantum diffusion      periodic oscillation      coupled systems      disorder      Anderson localization  
Received:  27 March 2023      Revised:  18 April 2023      Accepted manuscript online:  20 April 2023
PACS:  03.65.-w (Quantum mechanics)  
  71.23.-k (Electronic structure of disordered solids)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  72.80.Ng (Disordered solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874316), the National Basic Research Program of China (Grant No. 2015CB921103), and the International Visiting Faculty Program of Hunan Provincial Government, China.
Corresponding Authors:  Jian-Xin Zhong     E-mail:  jxzhong@xtu.edu.cn

Cite this article: 

Yan-Yan Lu(陆艳艳), Chao Wang(王超), Jin-Yi Jiang(将金益), Jie Liu(刘洁), and Jian-Xin Zhong(钟建新) Periodic electron oscillation in coupled two-dimensional lattices 2023 Chin. Phys. B 32 070306

[1] Bloch F 1928 Z. Phys. 52 555
[2] Zener C 1934 Proc. R. Soc. London A 145 523
[3] Wannier G H 1962 Rev. Mod. Phys. 34 645
[4] Wannier G H 1960 Phys. Rev. 117 432
[5] Waschke C, Roskos H G, Schwedler R, Leo K, Kurz H and Köhler K 1993 Phys. Rev. Lett. 70 3319
[6] Leo K, Bolivar P H, Brüggemann F, Schwedler R and Köhler K 1992 Solid State Commun. 84 943
[7] Feldmann J, Leo K, Shah J, Miller D A, Cunningham J, Meier T, Von Plessen G, Schulze A, Thomas P and Schmitt-Rink S 1992 Phys. Rev. B 46 7252
[8] Roati G, De Mirandes E, Ferlaino F, Ott H, Modugno G and Inguscio M 2004 Phys. Rev. Lett. 92 230402
[9] Morsch O, Müller J, Cristiani M, Ciampini D and Arimondo E 2001 Phys. Rev. Lett. 87 140402
[10] Dahan M B, Peik E, Reichel J, Castin Y and Salomon C 1996 Phys. Rev. Lett. 76 4508
[11] Battesti R, Cladé P, Guellati-Khélifa S, Schwob C, Grémaud B, Nez F, Julien L and Biraben F 2004 Phys. Rev. Lett. 92 253001
[12] Gustavsson M, Haller E, Mark M, Danzl J G, Rojas-Kopeinig G and Nägerl H C 2008 Phys. Rev. Lett. 100 080404
[13] Ferrari G, Poli N, Sorrentino F and Tino G 2006 Phys. Rev. Lett. 97 060402
[14] Wilkinson S, Bharucha C, Madison K, Niu Q and Raizen M 1996 Phys. Rev. Lett. 76 4512
[15] Lenz G, Talanina I and De Sterke C M 1999 Phys. Rev. Lett. 83 963
[16] Dreisow F, Szameit A, Heinrich M, Pertsch T, Nolte S, Tünnermann A and Longhi S 2009 Phys. Rev. Lett. 102 076802
[17] Morandotti R, Peschel U, Aitchison J, Eisenberg H and Silberberg Y 1999 Phys. Rev. Lett. 83 4756
[18] Corrielli G, Crespi A, Della Valle G, Longhi S and Osellame R 2013 Nat. Commun. 4 1555
[19] Pertsch T, Dannberg P, Elflein W, Bräuer A and Lederer F 1999 Phys. Rev. Lett. 83 4752
[20] Gutiérrez L, Díaz-de-Anda A, Flores J, Méndez-Sánchez R, Monsivais G and Morales A 2006 Phys. Rev. Lett. 97 114301
[21] Jiang J, Lu Y, Wang C, Mosseri R and Zhong J 2022 Sci. China-Phys. Mech. Astron. 65 247211
[22] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Nature 459 820
[23] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[24] Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K and Taniguchi T 2019 Nature 572 215
[25] Liu Y W, Su Y, Zhou X F, Yin L J, Yan C, Li S Y, Yan W, Han S, Fu Z Q and Zhang Y 2020 Phys. Rev. Lett. 125 236102
[26] Novoselov K S, McCann E, Morozov S, Fal'ko V I, Katsnelson M, Zeitler U, Jiang D, Schedin F and Geim A 2006 Nat. Phys. 2 177
[27] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[28] McCann E and Fal'ko V I 2006 Phys. Rev. Lett. 96 086805
[29] Zhong J and Mosseri R 1995 J. Phys. Condens. Matter 7 8383
[30] Zhong J, Diener R, Steck D A, Oskay W H, Raizen M G, Plummer E W, Zhang Z and Niu Q 2001 Phys. Rev. Lett. 86 2485
[31] Anderson P W 1958 Phys. Rev. 109 1492
[32] Thouless D J 1974 Phys. Rep. 13 93
[33] Mott N F 1968 Rev. Mod. Phys. 40 677
[34] Abrahams E, Anderson P, Licciardello D and Ramakrishnan T 1979 Phys. Rev. Lett. 42 673
[35] Koshino M and Son Y W 2019 Phys. Rev. B 100 075416
[36] Moon P and Koshino M 2013 Phys. Rev. B 88 241412
[1] Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2023, 32(5): 056301.
[2] Stability of the topological quantum critical point between multi-Weyl semimetal and band insulator
Zhao-Kun Yang(杨兆昆), Jing-Rong Wang(王景荣), and Guo-Zhu Liu(刘国柱). Chin. Phys. B, 2023, 32(5): 056401.
[3] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[4] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[5] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[6] Filling up complex spectral regions through non-Hermitian disordered chains
Hui Jiang and Ching Hua Lee. Chin. Phys. B, 2022, 31(5): 050307.
[7] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[8] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[9] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[10] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[11] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[12] Barrier or easy-flow channel: The role of grain boundary acting on vortex motion in type-II superconductors
Yu Liu(刘宇), Xiao-Fan Gou(苟晓凡), and Feng Xue(薛峰). Chin. Phys. B, 2021, 30(9): 097402.
[13] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
[14] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[15] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
No Suggested Reading articles found!