Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 070202    DOI: 10.1088/1674-1056/acb9e5
GENERAL Prev   Next  

Soliton propagation for a coupled Schrödinger equation describing Rossby waves

Li-Yang Xu(徐丽阳), Xiao-Jun Yin(尹晓军), Na Cao(曹娜) and Shu-Ting Bai(白淑婷)
College of Science, Inner Mongolia Agriculture University, Hohhot 010018, China
Abstract  We study a coupled Schrödinger equation which is started from the Boussinesq equation of atmospheric gravity waves by using multiscale analysis and reduced perturbation method. For the coupled Schrödinger equation, we obtain the Manakov model of all-focusing, all-defocusing and mixed types by setting parameters value and apply the Hirota bilinear approach to provide the two-soliton and three-soliton solutions. Especially, we find that the all-defocusing type Manakov model admits bright-bright soliton solutions. Furthermore, we find that the all-defocusing type Manakov model admits bright-bright-bright soliton solutions. Therefrom, we go over how the free parameters affect the Manakov model's all-focusing type's two-soliton and three-soliton solutions' collision locations, propagation directions, and wave amplitudes. These findings are useful for setting a simulation scene in Rossby waves research. The answers we have found are helpful for studying physical properties of the equation in Rossby waves.
Keywords:  Hirota bilinear method      Schrödinger equation      soliton solution      Rossby waves  
Received:  06 January 2023      Revised:  04 February 2023      Accepted manuscript online:  08 February 2023
PACS:  02.30.Jr (Partial differential equations)  
  04.30.Nk (Wave propagation and interactions)  
  05.45.Yv (Solitons)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12102205 and 12161065), the Scientific Research Ability of Youth Teachers of Inner Mongolia Agricultural University (Grant Nos. JC2021001 and BR220126), the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No. 2022QN01003), and the Research Program of Inner Mongolia Autonomous Region Education Department (Grant Nos. NJYT23099 and NMGIRT2208).
Corresponding Authors:  Xiao-Jun Yin     E-mail:  yinxiaojun_2002@163.com

Cite this article: 

Li-Yang Xu(徐丽阳), Xiao-Jun Yin(尹晓军), Na Cao(曹娜) and Shu-Ting Bai(白淑婷) Soliton propagation for a coupled Schrödinger equation describing Rossby waves 2023 Chin. Phys. B 32 070202

[1] Kornhuber K, Coumou D and Vogel E 2020 Nat. Clim. Chang. 10 48
[2] Zhang R G, Yang L G, Liu Q S and Yin X J 2019 Appl. Math. Comput. 346 666
[3] Yang Y Y and Song J 2021 Appl. Math. Lett. 121 107485
[4] Yu D, Zhang Z G and Yang H W 2022 Phys. Lett. 443 128205
[5] Fu L, Chen Y D and Yang H W 2019 Mathematics 7 41
[6] Yu Z Y, zhang Z G and Yang H W 2021 Commun. Theor. Phys. 73 115005
[7] Wang C, Zhang Z G, Li B and Yang H W 2023 Phys. Lett. A 457 128580
[8] Liu P and Lou S Y 2009 Commun. Theor. Phys. 51 27
[9] Tan B K 1996 J. Atmos. Sci. 53 1604
[10] Zhu L H, Zhou W C and Zou L J 2004 Jounal of Nanjing Institute of Meteorology 3 405 (in Chinese)
[11] Benney D J and Newell A C 1967 J. Math. Phys. 46 133
[12] Yang J K 1998 Phys. Rev. B 59 2393
[13] Chen S S, Tian B, Sun Y and Zhang C R 2019 Ann. Phys. 531 1900011
[14] Baronio F, Conforti M, Degasperis A, Lombardo S, Onorato M and Wabnitz S 2014 Phys. Rev. Lett. 113 034101
[15] Liu C, Yang R, Yang Z Y and Yang W L 2017 Chaos. 27 083120
[16] Akhmediev N and Ankiewicz A 1997 Solitons: Nonlinear Pulses and Beams, (London: Chapman and Hall) p. 14
[17] Yu W T, Liu W J, Triki H, Zhou Q and Biswas A 2019 Nonlinear Dyn. 97 1253
[18] Kanna T, Lakshmanan M, Dinda P T and Akhmediev N 2006 Phys. Rev. E 73 026604
[19] Wang L L and Liu W J 2020 Chin. Phys. B 29 070502
[20] Ablowitz M J, Biondini G and Ostrovsky L A 2000 Chaos 10 471
[21] Bludov Y V, Konotop V V and Akhmediev N 2009 Phys. Rev. A 80 033610
[22] Scott A C 1984 Phys. Scr. 29 279
[23] El-Tantawy S A, Alharbey R A and Salas A H 2022 Chaos, Solitons, Fractals 155 111776
[24] Sahadevan R, Tamizhmani K M and Lakshmanan M 1986 J. Phys. A: Math. Gen. 19 1783
[25] Liu P, Li Z L and Lou S Y 2010 Appl. Math. Mech. -Engl. Ed. 31 1383
[26] Porubov A V and Parker D F 1999 Wave Motion. 29 97
[27] Makhan'kov V G, Makhaldiani N V and Pashaev O K 1981 Phys. Lett. A 81 161
[28] Makhan'kov V G and Pashaev O K 1982 Theor. Math. Phys. 53 979
[29] Manakov S V 1974 Sov. Phys. JETP 38 248
[30] Ohta Y, Wang D S and Yang J K 2011 Stud. Appl. Math. 127 345
[31] Feng B F 2014 J. Phys. A: Math. Theor. 47 355203
[32] Radhakrishnan R and Lakshmanan M 1995 J. Phys. A: Math. Gen. 28 2683
[33] Zhao Y W, Xia J W and Lü X 2022 Nonlinear Dyn. 108 4195
[34] Yin Y H, Lü X and Ma W X 2022 Nonlinear Dyn. 108 4181
[35] Kumar S, Mohan B and Kumar R 2022 Nonlinear Dyn. 110 693
[36] Zhou Q, Luan Z T, Zeng Z L and Zhong Y 2022 Nonlinear Dyn. 109 3083
[37] Wazwaz A M, Albalawi W and El-Tantawy S A 2022 Optik 255 168673
[38] Yu W T, Liu W J, Triki H, Zhou Q, Biswas A and Belic M R 2019 Nonlinear Dyn. 97 471
[39] Yang X Q, Fan E G and Zhang N 2022 Chin. Phys. B 31 070202
[40] Wang L L, Luan Z T, Zhou Q, Biswas A, Alzahrani A K and Liu W J 2021 Nonlinear Dyn. 104 2613
[41] Chen J C, Chen Y, Feng B F and Zhu H M 2014 Chin. Phys. Lett. 31 110502
[42] Song L J, Xu X Y and Wang Y 2020 Chin. Phys. B 29 064211
[43] Hirota R 1971 Phys. Rev. Lett. 27 1192
[44] Sun Y 2021 Analytic study on several nonlinear models in optical fiber communications, fluids and other fields (Ph.D. Dissertation) (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)
[1] Interaction solutions and localized waves to the (2+1)-dimensional Hirota-Satsuma-Ito equation with variable coefficient
Xinying Yan(闫鑫颖), Jinzhou Liu(刘锦洲), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(7): 070201.
[2] Interaction solutions for the second extended (3+1)-dimensional Jimbo-Miwa equation
Hongcai Ma(马红彩), Xue Mao(毛雪), and Aiping Deng(邓爱平). Chin. Phys. B, 2023, 32(6): 060201.
[3] Superposition formulas of multi-solution to a reduced (3+1)-dimensional nonlinear evolution equation
Hangbing Shao(邵杭兵) and Bilige Sudao(苏道毕力格). Chin. Phys. B, 2023, 32(5): 050204.
[4] Breather and its interaction with rogue wave of the coupled modified nonlinear Schrödinger equation
Ming Wang(王明), Tao Xu(徐涛), Guoliang He(何国亮), and Yu Tian(田雨). Chin. Phys. B, 2023, 32(5): 050503.
[5] Riemann-Hilbert approach of the complex Sharma-Tasso-Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[6] Quantum speed limit of a single atom in a squeezed optical cavity mode
Ya-Jie Ma(马雅洁), Xue-Chen Gao(高雪晨), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040308.
[7] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[8] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[9] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[10] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[11] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[12] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[13] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[14] Exact solutions of the Schrödinger equation for a class of hyperbolic potential well
Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(4): 040301.
[15] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
No Suggested Reading articles found!