Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 070203    DOI: 10.1088/1674-1056/acb9f3
GENERAL Prev   Next  

Rapid stabilization of stochastic quantum systems in a unified framework

Jie Wen(温杰)1,†,‡, Fangmin Wang(王芳敏)2,†, Yuanhao Shi(史元浩)1, Jianfang Jia(贾建芳)1, and Jianchao Zeng(曾建潮)3,§
1 School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China;
2 State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China;
3 School of Computer Science and Technology, North University of China, Taiyuan 030051, China
Abstract  Rapid stabilization of general stochastic quantum systems is investigated based on the rapid stability of stochastic differential equations. We introduce a Lyapunov-LaSalle-like theorem for a class of nonlinear stochastic systems first, based on which a unified framework of rapidly stabilizing stochastic quantum systems is proposed. According to the proposed unified framework, we design the switching state feedback controls to achieve the rapid stabilization of single-qubit systems, two-qubit systems, and N-qubit systems. From the unified framework, the state space is divided into two state subspaces, and the target state is located in one state subspace, while the other system equilibria are located in the other state subspace. Under the designed state feedback controls, the system state can only transit through the boundary between the two state subspaces no more than two times, and the target state is globally asymptotically stable in probability. In particular, the system state can converge exponentially in (all or part of) the state subspace where the target state is located. Moreover, the effectiveness and rapidity of the designed state feedback controls are shown in numerical simulations by stabilizing GHZ states for a three-qubit system.
Keywords:  rapid stabilization      state feedback      stochastic quantum systems      switching control  
Received:  09 November 2022      Revised:  05 February 2023      Accepted manuscript online:  08 February 2023
PACS:  02.30.Yy (Control theory)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant No. 72071183), and Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2020-114).
Corresponding Authors:  Jie Wen, Jianchao Zeng     E-mail:  wenjie015@gmail.com;zengjianchao@263.net

Cite this article: 

Jie Wen(温杰), Fangmin Wang(王芳敏), Yuanhao Shi(史元浩), Jianfang Jia(贾建芳), and Jianchao Zeng(曾建潮) Rapid stabilization of stochastic quantum systems in a unified framework 2023 Chin. Phys. B 32 070203

[1] D'Alessandro D and Dahleh M 2001 IEEE Trans. Automat. Control 46 866
[2] Shabani A and Jacobs K 2008 Phys. Rev. Lett. 101 230403
[3] van Damme L, Ansel Q, Glaser S J and Sugny D 2017 Phys. Rev. A 95 063403
[4] Kuang S and Cong S 2008 Automatica 44 98
[5] Kuang S, Dong D and Petersen I R 2017 Automatica 81 164
[6] Wen J, Shi Y and Lu X 2018 J. Franklin Institute 355 2562
[7] Wang Y, Hu C, Shi Z, Huang B, Song J and Xia Y 2019 Ann. Phys. 531 1900006
[8] Belavkin V P 1983 Avtomat. i Telemekh. 44 178
[9] Belavkin V P 1992 J. Multivariate Anal. 42 171
[10] Mirrahimi M and van Handel R 2007 SIAM J. Control Optim. 46 445
[11] Ge S S, Vu T L and Huang C C 2012 Automatica 48 1031
[12] Cong S, Wen J, Kuang S and Meng F 2016 Sci. China Inform. Sci. 59 112502
[13] Vu T L, Ge S S and Lee T H 2015 54th IEEE Conference on Decision and Control, December 15-18, 2015, Osaka, Japan, p. 7749
[14] Zhou J, Kuang S and Cong S 2017 J. Syst. Sci. Complex. 30 347
[15] Liu Y, Kuang S and Cong S 2017 IEEE Trans. Cybern. 47 3827
[16] Kuang S, Li G, Liu Y, Sun X and Cong S 2022 IEEE Trans. Cybern. 52 11213
[17] Liang W, Amini N and Mason P 2021 SIAM J. Control Optim. 59 669
[18] Cardona G, Sarlette A and Rouchon P 2020 Automatica 112 108719
[19] Sayrin C, Dotsenko I, Zhou X, Peaudecerf B, Rybarczyk T, Gleyzes S, Rouchon P, Mirrahimi M, Amini H, Brune M, Raimond J and Haroche S 2011 Nature 477 73
[20] Wen J, Shi Y, Pang X, Jia J and Zeng J 2020 J. Franklin Institute 357 7515
[21] Yamamoto N, Tsumura K and Hara S 2007 Automatica 43 981
[22] van Handel R, Stockton J K and Mabuchi H 2005 J. Opt. B: Quant. Semiclassic. Opt. 7 S179
[23] Mancini S and Bose S 2004 Phys. Rev. A 70 022307
[24] Dotsenko I, Mirrahimi M, Brune M, Haroche S, Raimond J M and Rouchon P 2009 Phys. Rev. A 80 013805
[25] Amini N, Somaraju R A, Dotsenko I, Sayrin C, Mirrahimi M and Rouchon P 2013 Automatica 49 2683
[26] Wang J and Wiseman H M 2001 Phys. Rev. A 64 063810
[27] Ticozzi F, Schirmer S G and Wang X 2010 IEEE Trans. Automat. Control 55 2901
[28] Liang W, Amini N and Mason P 2022 IEEE Trans. Automat. Control 67 2918
[29] Wen J, Shi Y, Jia J and Zeng J 2021 Results Phys. 22 103929
[30] Sun X, Kuang S and Dong D 2017 IEEE International Conference on Systems, Man, and Cybernetics, October 5-8, 2017, Banff, Canada, p. 310
[31] Li G, Liu Y, Kuang S and Xiang C 2022 J. Franklin Institute 359 2073
[32] Deng H, Krstic M and Williams R 2001 IEEE Trans. Automat. Control 46 1237
[33] van Handel R, Stockton J K and Mabuchi H 2005 IEEE Trans. Automat. Control 50 768
[34] Liang W, Amini N and Mason P 2019 SIAM J. Control Optim. 57 3939
[1] Generation of transient chaos from two-dimensional systems via a switching approach
Sun Chang-Chun (孙常春), Xu Qi-Cheng (徐启程), Sui Ying (隋英). Chin. Phys. B, 2013, 22(3): 030507.
[2] The feedback control of fractional order unified chaotic system
Yang Jie(杨捷) and Qi Dong-Lian(齐冬莲) . Chin. Phys. B, 2010, 19(2): 020508.
[3] Anticontrol of chaos for discrete-time fuzzy hyperbolic model with uncertain parameters
Zhao Yan(赵琰), Zhang Hua-Guang(张化光), and Zheng Cheng-De(郑成德). Chin. Phys. B, 2008, 17(2): 529-535.
[4] Analysis and implementation of a new hyperchaotic system
Wang Guang-Yi(王光义),Liu Jing-Biao(刘敬彪), and Zheng Xin(郑欣). Chin. Phys. B, 2007, 16(8): 2278-2284.
No Suggested Reading articles found!