Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 075203    DOI: 10.1088/1674-1056/acc7fc
Special Issue: SPECIAL TOPIC — Plasma disruption
SPECIAL TOPIC—Plasma disruption Prev   Next  

Disruption prediction based on fusion feature extractor on J-TEXT

Wei Zheng(郑玮)1, Fengming Xue(薛凤鸣)1,2, Zhongyong Chen(陈忠勇)1,†, Chengshuo Shen(沈呈硕)1, Xinkun Ai(艾鑫坤)1, Yu Zhong(钟昱)1, Nengchao Wang(王能超)1, Ming Zhang(张明)1, Yonghua Ding(丁永华)1, Zhipeng Chen(陈志鹏)1, Zhoujun Yang(杨州军)1, and Yuan Pan(潘垣)1
1 International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
2 Institute of Artificial Intelligence, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  Predicting disruptions across different tokamaks is necessary for next generation device. Future large-scale tokamaks can hardly tolerate disruptions at high performance discharge, which makes it difficult for current data-driven methods to obtain an acceptable result. A machine learning method capable of transferring a disruption prediction model trained on one tokamak to another is required to solve the problem. The key is a feature extractor which is able to extract common disruption precursor traces in tokamak diagnostic data, and can be easily transferred to other tokamaks. Based on the concerns above, this paper presents a deep feature extractor, namely, the fusion feature extractor (FFE), which is designed specifically for extracting disruption precursor features from common diagnostics on tokamaks. Furthermore, an FFE-based disruption predictor on J-TEXT is demonstrated. The feature extractor is aimed to extracting disruption-related precursors and is designed according to the precursors of disruption and their representations in common tokamak diagnostics. Strong inductive bias on tokamak diagnostics data is introduced. The paper presents the evolution of the neural network feature extractor and its comparison against general deep neural networks, as well as a physics-based feature extraction with a traditional machine learning method. Results demonstrate that the FFE may reach a similar effect with physics-guided manual feature extraction, and obtain a better result compared with other deep learning methods.
Keywords:  feature extractor      disruption prediction      deep learning      tokamak diagnostics  
Received:  29 December 2022      Revised:  24 March 2023      Accepted manuscript online:  28 March 2023
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFE03040004) and the National Natural Science Foundation of China (Grant No. 51821005).
Corresponding Authors:  Zhongyong Chen     E-mail:  zychen@hust.edu.cn

Cite this article: 

Wei Zheng(郑玮), Fengming Xue(薛凤鸣), Zhongyong Chen(陈忠勇), Chengshuo Shen(沈呈硕), Xinkun Ai(艾鑫坤), Yu Zhong(钟昱), Nengchao Wang(王能超), Ming Zhang(张明),Yonghua Ding(丁永华), Zhipeng Chen(陈志鹏), Zhoujun Yang(杨州军), and Yuan Pan(潘垣) Disruption prediction based on fusion feature extractor on J-TEXT 2023 Chin. Phys. B 32 075203

[1] ITER Physics Expert Group on Disruptions, Plasma Control and MHD and ITER Physics Basis Editors 1999 Nucl. Fusion 39 2251
[2] Hender T C, Wesley J C, Bialek J, et al. 2007 Nucl. Fusion 47 S128
[3] Boozer A H 2012 Phys. Plasmas 19 058101
[4] Sugihara M, Shimada M, Fujieda H, Gribov Yu, Ioki K, Kawano Y, Khayrutdinov R, Lukash V and Ohmori J 2007 Nucl. Fusion 47 337
[5] Putvinski S V, et al. 2010 Disruption mitigation in ITER Proc. 23rd IAEA Fusion Energy Conf. (Daejeon, S. Korea) (IAEA), pp. ITR/1-6
[6] Luo Y H, Chen Z Y, Tang Y, Wang S Y, Ba W G, Wei Y N, Ma T K, Huang D W, Tong R H, Yan W, Geng P, Shao J and Zhuang G 2014 Review Sci. Instruments 85 083504
[7] Li Y, Chen Z Y, Wei Y N, Tong R H, Yan W, Lin Z F, Yang Z J and Jiang Z H 2018 Rev. Sci. Instrum. 89 10K116
[8] Aymerich E, Fanni A, Sias G, Carcangiu S, Cannas B, Murari A, Pau A and the JET contributors 2021 Nucl. Fusion 61 036013
[9] Lungaroni M, Murari A, Peluso E, Vega J, Farias G, Gelfusa M and JET contributors 2018 Fusion Eng. Design 130 62
[10] Rattá G A, Vega J, Murari A, Vagliasindi G, Johnson M F, de Vries P C and JET EFDA contributors 2010 Nucl. Fusion 50 025005
[11] Rea C, Montes K J, Erickson K G, Granetz R S and Tinguely R A 2019 Nucl. Fusion 59 096016
[12] Yang Z Y, Xia F, Song X M, Gao Z, Huang Y and Wang S 2020 Nucl. Fusion 60 016017
[13] Guo B H, Shen B, Chen D L, Rea C, Granetz R S, Huang Y, Zeng L, Zhang H, Qian J P and Sun Y W 2021 Plasma Phys. Control. Fusion 63 025008
[14] Guo B H, Chen D L, Shen B, Rea C, Granetz R S, Zeng L, Hu W H, Qian J P, Sun Y W and Xiao B J 2021 Plasma Phys. Control. Fusion 63 115007
[15] Kates-Harbeck J, Svyatkovskiy A and Tang W 2019 Nature 568 526
[16] Voulodimos A, Doulamis N, Doulamis A and Protopapadakis E 2018 Comput. Intel Neuroscience 2018 7068349
[17] Young T, Hazarika D, Poria S and Cambria E 2018 IEEE Comput. Intell. Magazine 13 55
[18] Zhu J X, Rea C, Montes K, Granetz R S, Sweeney R and Tinguely R A 2021 Nucl. Fusion 61 026007
[19] Ding Y H, Chen Z Y and Chen Z P, et al. 2018 Plasma Sci. Technology 20 125101
[20] Liang Y F, Wang N C and Ding Y H, et al. 2019 Nucl. Fusion 59 112016
[21] Zhang M, Wu Q Q, Zheng W, Shang Y X and Wang Y X 2020 Fusion Eng. Design 160 111981
[22] Hochreiter S and Schmidhuber J 1997 Neural Computation 9 1735
[23] Zheng W, Hu F R, Zhang M, Chen Z Y, Zhao X Q, Wang X L, Shi P, Zhang X L, Zhang X Q, Zhou Y N, Wei Y N, Pan Y and J-TEXT team 2018 Nucl. Fusion 58 056016
[24] Nave M F F, Ali-Arshad S and Alper B, et al. 1995 Nucl. Fusion 35 409
[25] Cortes C and Vapnik V 1995 Mach. Learning 20 273
[26] Li D, Yu Q Q and Ding Y D, et al. 2020 Nucl. Fusion 60 056022
[27] Shen C S, Cai Z M, Ren T, Zhang X T, Hu Q M, Wang N C, Huang Z, Zhou S, Li J C, Li M, Li D, Han D L and Ding Y H 2019 Rev. Sci. Instruments 90 123506
[28] Caruana R 1997 Mach. Learning 28 41
[1] Modeling differential car-following behavior under normal and rainy conditions: A memory-based deep learning method with attention mechanism
Hai-Jian Bai(柏海舰), Chen-Chen Guo(过晨晨), Heng Ding(丁恒), Li-Yang Wei(卫立阳), Ting Sun(孙婷), and Xing-Yu Chen(陈星宇). Chin. Phys. B, 2023, 32(6): 060507.
[2] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[3] Development of an electronic stopping power model based on deep learning and its application in ion range prediction
Xun Guo(郭寻), Hao Wang(王浩), Changkai Li(李长楷),Shijun Zhao(赵仕俊), Ke Jin(靳柯), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(7): 073402.
[4] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[5] Fringe removal algorithms for atomic absorption images: A survey
Gaoyi Lei(雷高益), Chencheng Tang(唐陈成), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2022, 31(5): 050313.
[6] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[7] Deep learning for image reconstruction in thermoacoustic tomography
Qiwen Xu(徐启文), Zhu Zheng(郑铸), and Huabei Jiang(蒋华北). Chin. Phys. B, 2022, 31(2): 024302.
[8] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[9] RNAGCN: RNA tertiary structure assessment with a graph convolutional network
Chengwei Deng(邓成伟), Yunxin Tang(唐蕴芯), Jian Zhang(张建), Wenfei Li(李文飞), Jun Wang(王骏), and Wei Wang(王炜). Chin. Phys. B, 2022, 31(11): 118702.
[10] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[11] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[12] Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space
Wanrun Jiang(姜万润), Yuzhi Zhang(张与之), Linfeng Zhang(张林峰), and Han Wang(王涵). Chin. Phys. B, 2021, 30(5): 050706.
[13] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
[14] An image compressed sensing algorithm based on adaptive nonlinear network
Yuan Guo(郭媛), Wei Chen(陈炜), Shi-Wei Jing(敬世伟). Chin. Phys. B, 2020, 29(5): 054203.
[15] Novel transit-time oscillator (TTO) combining advantages of radial-line and axial TTO
Wei-Li Xu(徐伟力), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Li-Li Song(宋莉莉), Bing-Fang Deng(邓秉方), Ouzhixiong Dai(戴欧志雄), Xing-Jun Ge(葛行军). Chin. Phys. B, 2019, 28(8): 085201.
No Suggested Reading articles found!