Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 067205    DOI: 10.1088/1674-1056/ac89db
Special Issue: SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Xiamen University
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Xiamen University Prev   Next  

Impacts of hydrogen annealing on the carrier lifetimes in p-type 4H-SiC after thermal oxidation

Ruijun Zhang(张锐军)1, Rongdun Hong(洪荣墩)1,†, Jingrui Han(韩景瑞)2, Hungkit Ting(丁雄杰)2, Xiguang Li(李锡光)2, Jiafa Cai(蔡加法)1, Xiaping Chen(陈厦平)1, Deyi Fu(傅德颐)1, Dingqu Lin(林鼎渠)1, Mingkun Zhang(张明昆)1, Shaoxiong Wu(吴少雄)1, Yuning Zhang(张宇宁)1, Zhengyun Wu(吴正云)1, and Feng Zhang(张峰)1,‡
1 Department of physics, Xiamen university, Xiamen 361005, China;
2 Guangdong Tianyu Semiconductor Co., Ltd, Dongguan 523808, China
Abstract  Thermal oxidation and hydrogen annealing were applied on a 100 μm thick Al-doped p-type 4H-SiC epitaxial wafer to modulate the minority carrier lifetime, which was investigated by microwave photoconductive decay (μ-PCD). The minority carrier lifetime decreased after each thermal oxidation. On the contrary, with the hydrogen annealing time increasing to 3 hours, the minority carrier lifetime increased from 1.1 μs (as-grown) to 3.14 μs and then saturated after the annealing time reached 4 hours. The increase of surface roughness from 0.236 nm to 0.316 nm may also be one of the reasons for limiting the further improvement of the minority carrier lifetimes. Moreover, the whole wafer mappings of minority carrier lifetimes before and after hydrogen annealing were measured and discussed. The average minority carrier lifetime was up to 1.94 μs and non-uniformity of carrier lifetime reached 38% after 4-hour hydrogen annealing. The increasing minority carrier lifetimes could be attributed to the double mechanisms of excess carbon atoms diffusion caused by selective etching of Si atoms and passivation of deep-level defects by hydrogen atoms.
Keywords:  4H-SiC      carrier lifetime      hydrogen annealing  
Received:  01 July 2022      Revised:  08 August 2022      Accepted manuscript online:  16 August 2022
PACS:  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  72.80.Jc (Other crystalline inorganic semiconductors)  
Fund: Project supported by Key Area Research and Development Project of Guangdong Province, China (Grant No. 2020B010170002), the Science Challenge Project (Grant No. TZ2018003-1-101), the Natural Science Foundation of Fujian Province of China for Distinguished Young Scholars (Grant No. 2020J06002), the Science and Technology Project of Fujian Province of China (Grant No. 2020I0001), the Fundamental Research Funds for the Central Universities (Grant Nos. 20720190049 and 20720190053), and the Science and Technology Key Projects of Xiamen (Grant No. 3502ZCQ20191001), and the National Natural Science Foundation of China (Grant No. 51871189).
Corresponding Authors:  Rongdun Hong, Feng Zhang     E-mail:  rdhong@xmu.edu.cn;fzhang@xmu.edu.cn

Cite this article: 

Ruijun Zhang(张锐军), Rongdun Hong(洪荣墩), Jingrui Han(韩景瑞), Hungkit Ting(丁雄杰), Xiguang Li(李锡光), Jiafa Cai(蔡加法), Xiaping Chen(陈厦平), Deyi Fu(傅德颐), Dingqu Lin(林鼎渠), Mingkun Zhang(张明昆), Shaoxiong Wu(吴少雄),Yuning Zhang(张宇宁), Zhengyun Wu(吴正云), and Feng Zhang(张峰) Impacts of hydrogen annealing on the carrier lifetimes in p-type 4H-SiC after thermal oxidation 2023 Chin. Phys. B 32 067205

[1] Matsunami H and Kimoto T1997 Materials Science & Engineering R-Reports 20 125
[2] Cooper J A, Melloch M R, Singh R, Agarwal A and Palmour J W2002 Ieee Transactions on Electron Devices 49 658
[3] Kimoto T, Yamada K, Niwa H and Suda J2016 Energies 9 908
[4] Zhang J, Storasta L, Bergman J P, Son N T and Janzen E2003 J. Appl. Phys. 93 4708
[5] Tawara T, Tsuchida H, Izumi S, Kamata I and Izumi K2004 Silicon Carbide and Related Materials 2003, Prts 1 and 2, Madar R and Camassel J eds. pp. 565-568
[6] Danno K, Nakamura D and Kimoto T2007 Appl. Phys. Lett. 90 202109
[7] Klein P B, Shanabrook B V, Huh S W, Polyakov A Y, Skowronski M, Sumakeris J J and O'Loughlin M J2006 Appl. Phys. Lett. 88 052110
[8] Beyer F C, Hemmingsson C G, Pedersen H, Henry A, Isoya J, Morishita N, Ohshima T and Janzen E2012 J. Phys. D-Appl. Phys. 45 455301
[9] Kimoto T, Nakazawa S, Hashimoto K and Matsunami H2001 Appl. Phys. Lett. 79 2761
[10] Kimoto T, Hashimoto K and Matsunami H2003 Jpn. J. Appl. Phys. 42 7294
[11] Storasta L and Tsuchida H2007 Appl. Phys. Lett. 90 062116
[12] Hiyoshi T and Kimoto T2009 Appl. Phys. Express 2 041101
[13] Miyazawa T, Ito M and Tsuchida H2010 Appl. Phys. Lett. 97 202106
[14] Hayashi T, Asano K, Suda J and Kimoto T2012 J. Appl. Phys. 112 064503
[15] Liaugaudas G, Dargis D, Kwasnicki P, Arvinte R, Zielinski M and Jarasiunas K2015 J. Phys. D-Appl. Phys. 48 025103
[16] Zhang R J, Hong R D, Cai J F, Chen X P, Lin D Q, Zhang M K, Wu S X, Zhang Y N, Han J R, Wu Z Y and Zhang F 2021 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia, WiPDA Asia 2021, August 25, 2021-August 27, 2021, Wuhan, China, pp. 281-284
[17] Kimoto T, Niwa H, Okuda T, Saito E, Zhao Y, Asada S and Suda J2018 J. Phys. D-Appl. Phys. 51 363001
[18] Okuda T, Miyazawa T, Tsuchida H, Kimoto T and Suda J2014 Appl. Phys. Express 7 085501
[19] Okuda T, Kimoto T and Suda J2013 Appl. Phys. Express 6 121301
[20] Ichikawa S, Kawahara K, Suda J and Kimoto T2012 Appl. Phys. Express 5 101301
[21] Hayashi T, Asano K, Suda J and Kimoto T2011 J. Appl. Phys. 109 014505
[22] Danno K and Kimoto T2007 J. Appl. Phys. 101 103704
[23] Powell J A, Petit J B, Edgar J H, Jenkins I G, Matus L G, Choyke W J, Clemen L, Yoganathan M, Yang J W and Pirouz P1991 Appl. Phys. Lett. 59 183
[24] Nakano Y, Nakamura T, Kamisawa A and Takasu H2009 International Conference on Silicon Carbide and Related Materials, 2009,Oct 14-19, Otsu, JAPAN, pp. 377-380
[25] Kimoto T, Hiyoshi T, Hayashi T and Suda J2010 J. Appl. Phys. 108 083721
[26] Klein P B2008 J. Appl. Phys. 103 033702
[27] Mori Y, Kato M and Ichimura M2014 J. Phys. D-Appl. Phys. 47 335102
[28] Deak P, Gali A and Aradi B2001 Silicon Carbide and Related Materials, Ecscrm2000, Pensl G, et al. eds. pp. 421-426
[29] Yan G G, Zhang F, Niu Y X, Yang F, Liu X F, Wang L, Zhao W S, Sun G S and Zeng Y P2015 Appl. Surf. Sci. 353 744
[30] Tsuchida H, Kamata I and Izumi K1997 Appl. Phys. Lett. 70 3072
[31] Samiji M E, Venter A, Wagener M C and Leitch A W R2001 J. Phys.-Condens. Matter 13 9011
[32] Gali A, Aradi B, Deak P, Choyke W J and Son N T2000 Phys. Rev. Lett. 84 4926
[33] Okuda T, Miyazawa T, Tsuchida H, Kimoto T and Suda J2017 J. Electron. Mater. 46 6411
[34] Charrier A, Coati A, Argunova T, Thibaudau F, Garreau Y, Pinchaux R, Forbeaux I, Debever J M, Sauvage-Simkin M and Themlin J M2002 J. Appl. Phys. 92 2479
[35] Sun C Z, Cai W W, Hong R D, Wu J K, Chen X P, Cai J F, Zhang F and Wu Z Y2020 Journal of Physics and Chemistry of Solids 137 109224
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
[4] A 4H-SiC merged P-I-N Schottky with floating back-to-back diode
Wei-Zhong Chen(陈伟中), Hai-Feng Qin(秦海峰), Feng Xu(许峰), Li-Xiang Wang(王礼祥), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(2): 028503.
[5] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[6] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[7] Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C
Si-Cheng Liu(刘思成), Xiao-Yan Tang(汤晓燕), Qing-Wen Song(宋庆文), Hao Yuan(袁昊), Yi-Meng Zhang(张艺蒙), Yi-Men Zhang(张义门), and Yu-Ming Zhang(张玉明). Chin. Phys. B, 2021, 30(2): 028503.
[8] Performance improvement of 4H-SiC PIN ultraviolet avalanche photodiodes with different intrinsic layer thicknesses
Xiaolong Cai(蔡小龙), Dong Zhou(周东), Liang Cheng(程亮), Fangfang Ren(任芳芳), Hong Zhong(钟宏), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海). Chin. Phys. B, 2019, 28(9): 098503.
[9] Impact of proton-induced alteration of carrier lifetime on single-event transient in SiGe heterojunction bipolar transistor
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏), Hong-Xia Guo(郭红霞). Chin. Phys. B, 2019, 28(7): 076106.
[10] Influence of deep defects on electrical properties of Ni/4H-SiC Schottky diode
Jin-Lan Li(李金岚), Yun Li(李赟), Ling Wang(汪玲), Yue Xu(徐跃), Feng Yan(闫锋), Ping Han(韩平), Xiao-Li Ji(纪小丽). Chin. Phys. B, 2019, 28(2): 027303.
[11] Ultra-high voltage 4H-SiC gate turn-off thyristor forlow switching time
Qing Liu(刘青), Hong-Bin Pu(蒲红斌), Xi Wang(王曦). Chin. Phys. B, 2019, 28(12): 127201.
[12] Hysteresis effect in current-voltage characteristics of Ni/n-type 4H-SiC Schottky structure
Hao Yuan(袁昊), Qing-Wen Song(宋庆文), Chao Han(韩超), Xiao-Yan Tang(汤晓燕), Xiao-Ning He(何晓宁), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门). Chin. Phys. B, 2019, 28(11): 117303.
[13] Defects and electrical properties in Al-implanted 4H-SiC after activation annealing
Yi-Dan Tang(汤益丹), Xin-Yu Liu(刘新宇), Zheng-Dong Zhou(周正东), Yun Bai(白云), Cheng-Zhan Li(李诚瞻). Chin. Phys. B, 2019, 28(10): 106101.
[14] Photoluminescence in fluorescent 4H-SiC single crystal adjusted by B, Al, and N ternary dopants
Shi-Yi Zhuo(卓世异), Xue-Chao Liu(刘学超), Wei Huang(黄维), Hai-Kuan Kong(孔海宽), Jun Xin(忻隽), Er-Wei Shi(施尔畏). Chin. Phys. B, 2019, 28(1): 017101.
[15] Simulation of SiC radiation detector degradation
Hai-Li Huang(黄海栗), Xiao-Yan Tang(汤晓燕), Hui Guo(郭辉), Yi-Men Zhang(张义门), Yu-Tian Wang(王雨田), Yu-Ming Zhang(张玉明). Chin. Phys. B, 2019, 28(1): 010701.
No Suggested Reading articles found!