Special Issue:
SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Xiamen University
|
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Xiamen University |
Prev
Next
|
|
|
Impacts of hydrogen annealing on the carrier lifetimes in p-type 4H-SiC after thermal oxidation |
Ruijun Zhang(张锐军)1, Rongdun Hong(洪荣墩)1,†, Jingrui Han(韩景瑞)2, Hungkit Ting(丁雄杰)2, Xiguang Li(李锡光)2, Jiafa Cai(蔡加法)1, Xiaping Chen(陈厦平)1, Deyi Fu(傅德颐)1, Dingqu Lin(林鼎渠)1, Mingkun Zhang(张明昆)1, Shaoxiong Wu(吴少雄)1, Yuning Zhang(张宇宁)1, Zhengyun Wu(吴正云)1, and Feng Zhang(张峰)1,‡ |
1 Department of physics, Xiamen university, Xiamen 361005, China; 2 Guangdong Tianyu Semiconductor Co., Ltd, Dongguan 523808, China |
|
|
Abstract Thermal oxidation and hydrogen annealing were applied on a 100 μm thick Al-doped p-type 4H-SiC epitaxial wafer to modulate the minority carrier lifetime, which was investigated by microwave photoconductive decay (μ-PCD). The minority carrier lifetime decreased after each thermal oxidation. On the contrary, with the hydrogen annealing time increasing to 3 hours, the minority carrier lifetime increased from 1.1 μs (as-grown) to 3.14 μs and then saturated after the annealing time reached 4 hours. The increase of surface roughness from 0.236 nm to 0.316 nm may also be one of the reasons for limiting the further improvement of the minority carrier lifetimes. Moreover, the whole wafer mappings of minority carrier lifetimes before and after hydrogen annealing were measured and discussed. The average minority carrier lifetime was up to 1.94 μs and non-uniformity of carrier lifetime reached 38% after 4-hour hydrogen annealing. The increasing minority carrier lifetimes could be attributed to the double mechanisms of excess carbon atoms diffusion caused by selective etching of Si atoms and passivation of deep-level defects by hydrogen atoms.
|
Received: 01 July 2022
Revised: 08 August 2022
Accepted manuscript online: 16 August 2022
|
PACS:
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
72.80.Jc
|
(Other crystalline inorganic semiconductors)
|
|
Fund: Project supported by Key Area Research and Development Project of Guangdong Province, China (Grant No. 2020B010170002), the Science Challenge Project (Grant No. TZ2018003-1-101), the Natural Science Foundation of Fujian Province of China for Distinguished Young Scholars (Grant No. 2020J06002), the Science and Technology Project of Fujian Province of China (Grant No. 2020I0001), the Fundamental Research Funds for the Central Universities (Grant Nos. 20720190049 and 20720190053), and the Science and Technology Key Projects of Xiamen (Grant No. 3502ZCQ20191001), and the National Natural Science Foundation of China (Grant No. 51871189). |
Corresponding Authors:
Rongdun Hong, Feng Zhang
E-mail: rdhong@xmu.edu.cn;fzhang@xmu.edu.cn
|
Cite this article:
Ruijun Zhang(张锐军), Rongdun Hong(洪荣墩), Jingrui Han(韩景瑞), Hungkit Ting(丁雄杰), Xiguang Li(李锡光), Jiafa Cai(蔡加法), Xiaping Chen(陈厦平), Deyi Fu(傅德颐), Dingqu Lin(林鼎渠), Mingkun Zhang(张明昆), Shaoxiong Wu(吴少雄),Yuning Zhang(张宇宁), Zhengyun Wu(吴正云), and Feng Zhang(张峰) Impacts of hydrogen annealing on the carrier lifetimes in p-type 4H-SiC after thermal oxidation 2023 Chin. Phys. B 32 067205
|
[1] Matsunami H and Kimoto T1997 Materials Science & Engineering R-Reports 20 125 [2] Cooper J A, Melloch M R, Singh R, Agarwal A and Palmour J W2002 Ieee Transactions on Electron Devices 49 658 [3] Kimoto T, Yamada K, Niwa H and Suda J2016 Energies 9 908 [4] Zhang J, Storasta L, Bergman J P, Son N T and Janzen E2003 J. Appl. Phys. 93 4708 [5] Tawara T, Tsuchida H, Izumi S, Kamata I and Izumi K2004 Silicon Carbide and Related Materials 2003, Prts 1 and 2, Madar R and Camassel J eds. pp. 565-568 [6] Danno K, Nakamura D and Kimoto T2007 Appl. Phys. Lett. 90 202109 [7] Klein P B, Shanabrook B V, Huh S W, Polyakov A Y, Skowronski M, Sumakeris J J and O'Loughlin M J2006 Appl. Phys. Lett. 88 052110 [8] Beyer F C, Hemmingsson C G, Pedersen H, Henry A, Isoya J, Morishita N, Ohshima T and Janzen E2012 J. Phys. D-Appl. Phys. 45 455301 [9] Kimoto T, Nakazawa S, Hashimoto K and Matsunami H2001 Appl. Phys. Lett. 79 2761 [10] Kimoto T, Hashimoto K and Matsunami H2003 Jpn. J. Appl. Phys. 42 7294 [11] Storasta L and Tsuchida H2007 Appl. Phys. Lett. 90 062116 [12] Hiyoshi T and Kimoto T2009 Appl. Phys. Express 2 041101 [13] Miyazawa T, Ito M and Tsuchida H2010 Appl. Phys. Lett. 97 202106 [14] Hayashi T, Asano K, Suda J and Kimoto T2012 J. Appl. Phys. 112 064503 [15] Liaugaudas G, Dargis D, Kwasnicki P, Arvinte R, Zielinski M and Jarasiunas K2015 J. Phys. D-Appl. Phys. 48 025103 [16] Zhang R J, Hong R D, Cai J F, Chen X P, Lin D Q, Zhang M K, Wu S X, Zhang Y N, Han J R, Wu Z Y and Zhang F 2021 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia, WiPDA Asia 2021, August 25, 2021-August 27, 2021, Wuhan, China, pp. 281-284 [17] Kimoto T, Niwa H, Okuda T, Saito E, Zhao Y, Asada S and Suda J2018 J. Phys. D-Appl. Phys. 51 363001 [18] Okuda T, Miyazawa T, Tsuchida H, Kimoto T and Suda J2014 Appl. Phys. Express 7 085501 [19] Okuda T, Kimoto T and Suda J2013 Appl. Phys. Express 6 121301 [20] Ichikawa S, Kawahara K, Suda J and Kimoto T2012 Appl. Phys. Express 5 101301 [21] Hayashi T, Asano K, Suda J and Kimoto T2011 J. Appl. Phys. 109 014505 [22] Danno K and Kimoto T2007 J. Appl. Phys. 101 103704 [23] Powell J A, Petit J B, Edgar J H, Jenkins I G, Matus L G, Choyke W J, Clemen L, Yoganathan M, Yang J W and Pirouz P1991 Appl. Phys. Lett. 59 183 [24] Nakano Y, Nakamura T, Kamisawa A and Takasu H2009 International Conference on Silicon Carbide and Related Materials, 2009,Oct 14-19, Otsu, JAPAN, pp. 377-380 [25] Kimoto T, Hiyoshi T, Hayashi T and Suda J2010 J. Appl. Phys. 108 083721 [26] Klein P B2008 J. Appl. Phys. 103 033702 [27] Mori Y, Kato M and Ichimura M2014 J. Phys. D-Appl. Phys. 47 335102 [28] Deak P, Gali A and Aradi B2001 Silicon Carbide and Related Materials, Ecscrm2000, Pensl G, et al. eds. pp. 421-426 [29] Yan G G, Zhang F, Niu Y X, Yang F, Liu X F, Wang L, Zhao W S, Sun G S and Zeng Y P2015 Appl. Surf. Sci. 353 744 [30] Tsuchida H, Kamata I and Izumi K1997 Appl. Phys. Lett. 70 3072 [31] Samiji M E, Venter A, Wagener M C and Leitch A W R2001 J. Phys.-Condens. Matter 13 9011 [32] Gali A, Aradi B, Deak P, Choyke W J and Son N T2000 Phys. Rev. Lett. 84 4926 [33] Okuda T, Miyazawa T, Tsuchida H, Kimoto T and Suda J2017 J. Electron. Mater. 46 6411 [34] Charrier A, Coati A, Argunova T, Thibaudau F, Garreau Y, Pinchaux R, Forbeaux I, Debever J M, Sauvage-Simkin M and Themlin J M2002 J. Appl. Phys. 92 2479 [35] Sun C Z, Cai W W, Hong R D, Wu J K, Chen X P, Cai J F, Zhang F and Wu Z Y2020 Journal of Physics and Chemistry of Solids 137 109224 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|