Abstract Nodal-line semimetals have become a research hot-spot due to their novel properties and great potential application in spin electronics. It is more challenging to find 2D nodal-line semimetals that can resist the spin-orbit coupling (SOC) effect. Here, we predict that 2D tetragonal ZnB is a nodal-line semimetal with great transport properties. There are two crossing bands centered on the point at the Fermi surface without SOC, which are mainly composed of the orbitals of Zn and B atoms and the orbitals of the B atom. Therefore, the system presents a nodal line centered on the point in its Brillouin zone (BZ). And the nodal line is protected by the horizontal mirror symmetry . We further examine the robustness of a nodal line under biaxial strain by applying up to in-plane compressive strain and 5% tensile strain on the ZnB monolayer, respectively. The transmission along the direction is significantly stronger than that along the direction in the conductive channel. The current in the direction is as high as 26.63 μA at 0.8 V, and that in the direction reaches 8.68 μA at 0.8 V. It is interesting that the transport characteristics of ZnB show the negative differential resistance (NDR) effect after 0.8 V along the direction. The results provide an ideal platform for research of fundamental physics of 2D nodal-line fermions and nanoscale spintronics, as well as the design of new quantum devices.
(Theory of electronic transport; scattering mechanisms)
Fund: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019MA041), Taishan Scholar Project of Shandong Province, China (Grant No. ts20190939), and the National Natural Science Foundation of China (Grant No. 62071200).
Corresponding Authors:
Ping Li
E-mail: ss_lip@ujn.edu.cn
Cite this article:
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍) Two-dimensional tetragonal ZnB: A nodalline semimetal with good transport properties 2023 Chin. Phys. B 32 067301
[1] Yazyev O V 2013 Acc. Chem. Res.46 2319 [2] Butler S Z, Hollen S M and Cao L 2013 ACS Nano7 2898 [3] Bhimanapati G R, Lin Z, Meunier V, Jung Y, et al.2015 ACS Nano9 11509 [4] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H2016 Science353 [5] Kassem A T2013 IOSR J. Appl. Chem.6 45 [6] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K2009 Rev. Mod. Phys.81 109 [7] Titheridge J E 1998 J. Geophys. Res. Space Phys.103 2261 [8] Bliokh Y P, Freilikher V and Nori F2013 Phys. Rev. B87 245134 [9] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L and Dean C R2013 Science342 614 [10] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z2010 Science329 61 [11] Zhang C W and Yan S S2012 J. Phys. Chem. C116 4163 [12] Wang Z, Zhou X F, Zhang X, Zhu Q, Dong H, Zhao M and Oganov A R2015 Nano Lett.15 6182 [13] Li S S, Ji W X, Hu S J, Zhang C W and Yan S S2017 ACS Appl. Mater. Interfaces9 41443 [14] Zhang W, Wu Q, Yazyev O V, Weng H, Guo Z, Cheng W D and Chai G L2018 Phys. Rev. B98 1 [15] Yuan D, Hu Y, Yang Y and Zhang W2021 Chin. Phys. Lett.38 117301 [16] Li W, Zhang G and Guo M 2014 Nano Research7 518 [17] Zhang L, Zhang S F, Ji W X, Zhang C W, Li P, Wang P J, Li S S and Yan S S2018 Nanoscale10 20748 [18] Wu Y, Wang L L, Mun E, Johnson D D, Mou D, Huang L, Lee Y, Bud'ko S L, Canfield P C and Kaminski A 2016 Nat. Phys.12 667 [19] Schoop L M, Ali M N, Straßer C, Topp A, Varykhalov A, Marchenko D, Duppel V, Parkin S S P, Lotsch B V and Ast C R2016 Nat. Commun.7 11696 [20] Weng H, Liang Y, Xu Q, Yu R, Fang Z, Dai X and Kawazoe Y2015 Phys. Rev. B92 045108 [21] Yu R, Weng H and Fang Z 2015 Phys. Rev. Lett.115 036807 [22] Jin Y J, Wang R, Zhao J Z, Du Y P, Zheng C Di, Gan L Y, Liu J F, Xu H and Tong S Y2017 Nanoscale9 13112 [23] Wirth G, Ölschlger M and Hemmerich A2011 Nat. Phys.7 147 [24] Li S, Liu Y, Wang S S, Yu Z M, Guan S, Sheng X L, Yao Y and Yang S A2018 Phys. Rev. B97 1 [25] Zhou P, Ma Z S and Sun L Z2018 J. Mater. Chem. C6 1206 [26] Zhong C, Wu W, He J, Ding G, Liu Y, Li D, Yang S A and Zhang G2019 Nanoscale11 2468 [27] Feng B, Fu B, Kasamatsu S, et al.2017 Nat. Commun.8 8 [28] Pang Z X, Zhao Y C, Ji W X, Wang Y and Li P2021 Phys. Chem. Chem. Phys.23 12280 [29] Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G and Marzari N2018 Nat. Nanotechnol.13 246 [30] Hu Y, Li S S, Ji W X, Zhang C W, Ding M, Wang P J and Yan S S2020 J. Phys. Chem. Lett.11 485 [31] Schmidt P, Haas S and Levi A F J2006 Appl. Phys. Lett.88 013502 [32] Tsu R and Esaki L1973 Appl. Phys. Lett.22 562 [33] Ismail M and Kim S2020 Appl. Surf. Sci.530 147284 [34] Kresse G and Furthmüller J1996 Comput. Mater. Sci.6 15 [35] Kresse G and Hafner J1993 Phys. Rev. B47 558 [36] Langreth D C and Mehl M J1983 Phys. Rev. B28 1809 [37] Perdew J P, Burke K and Ernzerhof M1996 Phys. Rev. Lett.77 3865 [38] Joubert D1999 Phys. Rev. B59 1758 [39] Becke A1988 Phys. Rev. A38 3098 [40] Heyd J, Scuseria G E and Ernzerhof M2003 J. Chem. Phys.118 8207 [41] Togo A, Oba F and Tanaka I2008 Phys. Rev. B78 134106 [42] Dudarev S and Botton G1998 Phys. Rev. B57 1505 [43] Baker J M1971 J. Phys. C Solid State Phys.4 930 [44] Ozaki T, Nishio K and Kino H2010 Phys. Rev. B81 035116 [45] Ozaki T2007 Phys. Rev. B75 035123 [46] Kulish V V and Huang W2017 J. Mater. Chem. C5 8734 [47] Andrew R C, Mapasha R E and Ukpong A M 2012 Phys. Rev. B85 125428 [48] Peng R, Ma Y, Huang B and Dai Y2019 J. Mater. Chem. A7 603 [49] Mouhat F and Coudert F X2014 Phys. Rev. B90 224104 [50] Zhang X, Wang A and Zhao M2015 Carbon N. Y.84 1 [51] Landauer R1981 Phys. Lett. A85 91 [52] Liu N, Zhang L, Chen X, Kong X, Zheng X and Guo H2016 Nanoscale8 16026 [53] Zhang L, Zhao J, Cheng N and Chen Z2020 Phys. Chem. Chem. Phys.22 3584 [54] Fu X X, Niu Y, Hao Z W, Dong M M and Wang C K2020 Phys. Chem. Chem. Phys.22 16063
[1]
Multiple surface states, nontrivial band topology, and antiferromagnetism in GdAuAl4Ge2 Chengcheng Zhang(张成成), Yuan Wang(王渊), Fayuan Zhang(张发远), Hongtao Rong(戎洪涛), Yongqing Cai(蔡永青), Le Wang(王乐), Xiao-Ming Ma(马小明), Shu Guo(郭抒), Zhongjia Chen(陈仲佳), Yanan Wang(王亚南), Zhicheng Jiang(江志诚), Yichen Yang(杨逸尘), Zhengtai Liu(刘正太), Mao Ye(叶茂), Junhao Lin(林君浩), Jiawei Mei(梅佳伟), Zhanyang Hao(郝占阳), Zijuan Xie(谢子娟), and Chaoyu Chen(陈朝宇). Chin. Phys. B, 2023, 32(7): 077401.
Effects of preparation parameters on growth and properties of β-Ga2O3 film Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.