INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Synergistic effect of total ionizing dose on single-event gate rupture in SiC power MOSFETs |
Rongxing Cao(曹荣幸)1,†, Kejia Wang(汪柯佳)1,2, Yang Meng(孟洋)1, Linhuan Li(李林欢)2, Lin Zhao(赵琳)3, Dan Han(韩丹)1, Yang Liu(刘洋)1, Shu Zheng(郑澍)1, Hongxia Li(李红霞)1, Yuqi Jiang(蒋煜琪)4, Xianghua Zeng(曾祥华)1, and Yuxiong Xue(薛玉雄)1,‡ |
1 College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China; 2 College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China; 3 Institute of Special Environments Physical Sciences, Harbin Institute of Technology, Shenzhen 518055, China; 4 College of Intelligent Manufacturing, Yangzhou Polytechnic Institute, Yangzhou 225002, China |
|
|
Abstract The synergistic effect of total ionizing dose (TID) and single event gate rupture (SEGR) in SiC power metal-oxide-semiconductor field effect transistors (MOSFETs) is investigated via simulation. The device is found to be more sensitive to SEGR with TID increasing, especially at higher temperature. The microscopic mechanism is revealed to be the increased trapped charges induced by TID and subsequent enhancement of electric field intensity inside the oxide layer.
|
Received: 23 October 2022
Revised: 04 January 2023
Accepted manuscript online: 22 February 2023
|
PACS:
|
85.30.Tv
|
(Field effect devices)
|
|
61.80.Az
|
(Theory and models of radiation effects)
|
|
61.80.Jh
|
(Ion radiation effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12004329), Open Project of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Grant No. SKLIPR2115), Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. SJCX22 1704), and Innovative Science and Technology Platform Project of Cooperation between Yangzhou City and Yangzhou University, China (Grant Nos. YZ202026301 and YZ202026306). |
Corresponding Authors:
Rongxing Cao, Yuxiong Xue
E-mail: rxcao@yzu.edu.cn;yxxue@yzu.edu.cn
|
Cite this article:
Rongxing Cao(曹荣幸), Kejia Wang(汪柯佳), Yang Meng(孟洋), Linhuan Li(李林欢), Lin Zhao(赵琳), Dan Han(韩丹), Yang Liu(刘洋), Shu Zheng(郑澍), Hongxia Li(李红霞), Yuqi Jiang(蒋煜琪), Xianghua Zeng(曾祥华), and Yuxiong Xue(薛玉雄) Synergistic effect of total ionizing dose on single-event gate rupture in SiC power MOSFETs 2023 Chin. Phys. B 32 068502
|
[1] Kimoto T and Yonezawa Y 2018 Mater. Sci. Semiconduct. Process. 78 43 [2] Abbate C, Busatto G, Tedesco D, Sanseverino A, Silvestrin L, Velardi F and Wyss J 2019 IEEE Trans. Electron. Devices 66 4235 [3] Hudgins J L, Simin G S, Santi E and Khan M A 2003 IEEE Trans. Power Electron. 18 907 [4] Soo M T, Cheong K Y and Noor A F M 2010 Sens. Actuators B:-Chem. 151 39 [5] Zhang H, Guo H X, Zhang F Q, Pan X Y, Liu Y T, Gu Z Q, Ju A A and Ouyang X P 2022 Chin. Phys. B 31 018501 [6] Soo M T, Cheong K Y and Noor A F M 2010 Sens. Actuators B:-Chem. 151 39 [7] Yang S, Liang X, Cui J, Zheng Q, Sun J, Liu M, Zhang D, Feng H, Yu X, Xiang C, Li Y and Guo Q 2021 J. Semiconduct. 42 082802 [8] Yu Q, Ali W, Cao S, Wang H, Lv H, Sun Y, Mo R, Wang Q, Mei B, Sun J, Zhang H, Tang M, Bai S, Zhang T, Bai Y and Zhang C 2022 IEEE Trans. Nucl. Sci. 69 1127 [9] Emeliyanov V V, Vatuev A S and Useinov R G 2016 IEEE Trans. Nucl. Sci. 63 2176 [10] Zhang T, Allard B and Bi J 2018 Microelectron. Reliab. 88-90 631 [11] Takeyama A, Matsuda T, Yokoseki T, Mitomo S, Murata K, Makino T, Onoda S, Okubo S, Tanaka Y, Kandori M, Yoshie T, Hijikata Y and Ohshima T 2016 Jpn. J. Appl Phys. 55 104101 [12] Zhang C X, Shen X, Zhang E X, Fleetwood D M, Schrimpf R D, Francis S A, Roy T, Dhar S, Ryu S H and Pantelides S T 2013 IEEE Trans. Electron Devices 60 2361 [13] Samanta P and Mandal K C 2017 J. Appl. Phys. 121 034501 [14] Hu D, Zhang J, Jia Y, Wu Y, Peng L and Tang Y 2018 IEEE Trans. Electron. Devices 65 3719 [15] Liang X, Cui J, Zheng Q, Zhao J, Yu X, Sun J, Zhang D and Guo Q 2020 Radiat. Effects Defects Solids 175 559 [16] Muthuseenu K, Barnaby H J, Galloway K F, Koziukov A E, Maksimenko T A, Vyrostkov M Y, Bu-Khasan K B, Kalashnikova A A and Privat A 2021 IEEE Trans. Nucl. Sci. 68 611 [17] Abbate C, Busatto G, Tedesco D, Sanseverino A, Velardi F and Wyss J 2019 IEEE Trans. Electron. Devices 66 4243 [18] Witulski A F, Ball D R, Galloway K F, Javanainen A, Lauenstein J M, Sternberg A L and Schrimpf R D 2018 IEEE Trans. Nucl. Sci. 65 1951 [19] Wang Y, Lin M, Li X J, Wu X, Yang J Q, Bao M T, Yu C H and Cao F 2019 IEEE Trans. Electron Devices 66 4264 [20] Shoji T, Nishida S, Hamada K and Tadano H 2015 Microelectron. Reliab. 55 1517 [21] Titus J L, Wheatley C F, Burton D I, Mouret I, Allenspach M, Brews J, Schrimpf R, Galloway K and Pease R L 1995 IEEE Trans. Nucl. Sci. 42 1928 [22] Li X, Jia Y, Zhou X, Zhao Y, Tang Y, Li Y, Liu G and Jia G 2020 IEEE Electron. Device Lett. 41 216 [23] Scheick L Z and Selva L E 2007 IEEE Trans. Nucl. Sci. 54 2568 [24] Kuboyama S, Mizuta E, Nakada Y and Shindou H 2019 IEEE Trans. Nucl. Sci. 66 1710 [25] Gurimskaya Y, Dias de Almeida P, Fernandez Garcia M, Mateu Suau I, Moll M, Fretwurst E, Makarenko L and Pintilie I 2020 Nucl. Instrum. Methods A 958 162221 [26] Busatto G, De Luca V, Iannuzzo F, Sanseverino A and Velardi F 2013 IEEE Trans. Nucl. Sci. 60 3793 [27] Ikeda N, Kuboyama S, Satoh Y and Tamura T 2008 IEEE Trans. Nucl. Sci. 55 3388 [28] Wan X, Zhou W S, Ren S, Liu D G, Xu J, Bo H L, Zhang E X, Schrimpf R D, Fleetwood D M and Ma T P 2015 IEEE Trans. Nucl. Sci. 62 2830 [29] Ruff M, Mitlehner H and Helbig R 1994 IEEE Trans. Electron. Devices 41 1040 [30] Roschke M and Schwierz F 2001 IEEE Trans. Electron. Devices 48 1442 [31] Koh M, Ohdomari I, Igarashi K, Matsukawa T and Sawara S 1999 J. Appl. Phys. 85 7814 [32] Van Overstraeten R and De Man H 1970 Solid-State Electron. 13 583 [33] Haldar S, Maneesha, Khanna M K and Gupta R S 1994 IEEE Trans. Electron. Devices 41 1674 [34] Shen P, Wang Y and Cao F 2022 Chin. Phys. B 31 078501 [35] DasGupta S, Brock R, Kaplar R, Marinella M, Smith M and Atcitty S 2011 Appl. Phys. Lett. 99 023503 [36] McWhorter P J and Winokur P S 1986 Appl. Phys. Lett. 48 133 [37] Lenahan P M and Dressendorfer P V 1984 J. Appl. Phys. 55 3495 [38] Akturk A, McGarrity J M, Potbhare S and Goldsman N 2012 IEEE Trans. Nucl. Sci. 59 3258 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|