Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 068701    DOI: 10.1088/1674-1056/acc803
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Orderly hysteresis in field-driven robot swarm active matter

Yanping Liu(刘艳萍)1, Gao Wang(王高)2,3, Peilong Wang(王培龙)2,4, Daming Yuan(袁大明)2,4, Shuaixu Hou(侯帅旭)1, Yangkai Jin(金阳凯)2,4, Jing Wang(王璟)2,3,†, and Liyu Liu(刘雳宇)1,‡
1 Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China;
2 Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
4 School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325001, China
Abstract  Boundary effect and time-reversal symmetry are hot topics in active matter. We present a biology-inspired robot-environment-interaction active matter system with the field-drive motion and the rules of resource search, resource consumption, and resource recovery. In an environmental compression-expansion cycle, the swarm emerges a series of boundary-dependent phase transitions, and the whole evolution process is time-reversal symmetry-breaking; we call this phenomenon "orderly hysteresis". We present the influence of the environmental recovery rate on the dynamic collective behavior of the swarm.
Keywords:  time-reversal symmetry-breaking      phase transitions      robot swarm      active matter  
Received:  27 January 2023      Revised:  03 March 2023      Accepted manuscript online:  28 March 2023
PACS:  87.15.Zg (Phase transitions)  
  89.75.Fb (Structures and organization in complex systems)  
  05.65.+b (Self-organized systems)  
  87.85.St (Robotics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974066 and 12174041) and the Seed Grants from the Wenzhou Institute, University of Chinese Academy of Sciences (Grant No. WIUCASQD2021002).
Corresponding Authors:  Jing Wang, Liyu Liu     E-mail:  wangjing@ucas.ac.cn;lyliu@cqu.edu.cn

Cite this article: 

Yanping Liu(刘艳萍), Gao Wang(王高), Peilong Wang(王培龙), Daming Yuan(袁大明), Shuaixu Hou(侯帅旭), Yangkai Jin(金阳凯), Jing Wang(王璟), and Liyu Liu(刘雳宇) Orderly hysteresis in field-driven robot swarm active matter 2023 Chin. Phys. B 32 068701

[1] Fodor É, Nardini C, Cates M E, Tailleur J, Visco P and Van Wijland F2016 Phys. Rev. Lett. 117 038103
[2] Ramaswamy S2017 J. Stat. Mech. 2017 054002
[3] Needleman D and Dogic Z2017 Nat. Rev. Mater. 2 17048
[4] Fang X, Kruse K, Lu T and Wang J2019 Rev. Mod. Phys. 91 045004
[5] Wang Y X and Chen S2015 Acta Phys. Sin. 64 054701 (in Chinese)
[6] Zhang H P, Shi X Q and Yang M C2022 Physics 51 217 (in Chinese)
[7] Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M and Simha R A2013 Rev. Mod. Phys. 85 1143
[8] Mahault B, Jiang X C, Bertin E, Ma Y Q, Patelli A, Shi X Q and Chaté H2018 Phys. Rev. Lett. 120 258002
[9] Mahault B and Chaté H2021 Phys. Rev. Lett. 127 048003
[10] Vicsek T and Zafeiris A2012 Phys. Rep. 517 71
[11] Giomi L2015 Phys. Rev. X 5 031003
[12] Nguyen N H P, Klotsa D, Engel M and Glotzer S C2014 Phys. Rev. Lett. 112 075701
[13] Liao G J and Klapp S H L2021 Soft Matter 17 6833
[14] Chepizhko O, Altmann E G and Peruani F2013 Phys. Rev. Lett. 110 238101
[15] Roy S, Shirazi M J, Jantzen B and Abaid N2019 Phys. Rev. E 100 062415
[16] Aguilar J, Zhang T, Qian F, Kingsbury M, Mcinroe B, Mazouchova N, Li C, Maladen R, Gong C, Travers M, Hatton R L, Choset H, Umbanhowar P B and Goldman D I2016 Rep. Prog. Phys. 79 110001
[17] Li S, Ozkan-Aydin Y, Xiao C, Small G, Gynai H N, Li G, Rieser J M, Laguna P and Goldman D I2022 Proc. Natl. Acad. Sci. USA 119 e2113912119
[18] Fruchart M, Hanai R, Littlewood P B and Vitelli V2021 Nature 592 363
[19] Webb B2001 Behav. Brain Sci. 24 1033
[20] Oh H, Ramezan Shirazi A, Sun C and Jin Y2017 Rob. Auton. Syst. 91 83
[21] Slavkov I, Carrillo-Zapata D, Carranza N, Diego X, Jansson F, Kaandorp J, Hauert S and Sharpe J2018 Sci. Robot. 3 eaau9178
[22] Romano D, Donati E, Benelli G and Stefanini C2019 Biol. Cybern. 113 201
[23] Wang G, Phan T V, Li S, Wang J, Peng Y, Chen G, Qu J, Goldman D I, Levin S A, Pienta K, Amend S, Austin R H and Liu L2022 Proc. Natl. Acad. Sci. USA 119 e2120019119
[24] Wang G, Phan T V, Li S, Wombacher M, Qu J, Peng Y, Chen G, Goldman D I, Levin S A, Austin R H and Liu L2021 Phys. Rev. Lett. 126 108002
[25] Huber L, Suzuki R, Krüger T, Frey E and Bausch A R2018 Science 361 255
[26] Berthier L and Kurchan J2013 Nat. Phys. 9 310
[27] Wu K T, Hishamunda J B, Chen D T N, Decamp S J, Chang Y W, Fernández-Nieves A, Fraden S and Dogic Z2017 Science 355 eaal1979
[28] Yang Q, Zhu H, Liu P, Liu R, Shi Q, Chen K, Zheng N, Ye F and Yang M2021 Phys. Rev. Lett. 126 198001
[29] Wu C, Dai J, Li X, Gao L, Wang J, Liu J, Zheng J, Zhan X, Chen J, Cheng X, Yang M and Tang J2021 Nat. Nanotechnol. 16 288
[30] Bowick M J, Fakhri N, Marchetti M C and Ramaswamy S2022 Phys. Rev. X 12 010501
[31] Ro S, Guo B, Shih A, Phan T V, Austin R H, Levine D, Chaikin P M and Martiniani S2022 Phys. Rev. Lett. 129 220601
[32] Liu S, Shankar S, Marchetti M C and Wu Y2021 Nature 590 80
[33] Phan T V, Wang G, Liu L and Austin R H2021 Symmetry 13 225
[34] Saha T and Galic M2018 Phil. Trans. R. Soc. B 373 20170113
[35] Steinhardt P J, Nelson D R and Ronchetti M1983 Phys. Rev. B 28 784
[36] Atkinson S, Stillinger F H and Torquato S2014 Proc. Natl. Acad. Sci. USA 111 18436
[37] Eslami H, Sedaghat P and Müller-Plathe F2018 Phys. Chem. Chem. Phys. 20 27059
[38] Debnath D, Gainer J S, Kilic C, Kim D, Matchev K T and Yang Y P2016 Eur. Phys. J. C 76 645
[39] Reisz T1995 Nucl. Phys. B 450 569
[40] Godina J J, Meurice Y, Oktay M B and Niermann S1998 Phys. Rev. D 57 6326
[41] Keys A S, Abate A R, Glotzer S C and Durian D J2007 Nat. Phys. 3 260
[42] Gatteschi D, Sessoli R and Villain J2006 Molecular Nanomagnets (Oxford: Oxford University Press on Demand) p. 60
[43] Petroff A P, Wu X L and Libchaber A2015 Phys. Rev. Lett. 114 158102
[44] Tan T H, Mietke A, Li J, Chen Y, Higinbotham H, Foster P J, Gokhale S, Dunkel J and Fakhri N2022 Nature 607 287
[45] Getzin S, Holch S, Yizhaq H and Wiegand K2022 Perspect. Plant Ecol. Evol. Syst. 57 125698
[46] O'byrne J, Kafri Y, Tailleur J and Van Wijland F2022 Nat. Rev. Phys. 4 167
[1] Spatial distribution order parameter prediction of collective system using graph network
Huimin Zhao(赵慧敏), Rui Wang(王瑞), Cai Zhao(赵偲), and Wen Zheng(郑文). Chin. Phys. B, 2023, 32(5): 056402.
[2] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[3] Graph dynamical networks for forecasting collective behavior of active matter
Yanjun Liu(刘彦君), Rui Wang(王瑞), Cai Zhao(赵偲), and Wen Zheng(郑文). Chin. Phys. B, 2022, 31(11): 116401.
[4] Active thermophoresis and diffusiophoresis
Huan Liang(梁欢), Peng Liu(刘鹏), Fangfu Ye(叶方富), and Mingcheng Yang(杨明成). Chin. Phys. B, 2022, 31(10): 104702.
[5] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[6] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[7] Discontinuous and continuous transitions of collective behaviors in living systems
Xu Li(李旭), Tingting Xue(薛婷婷), Yu Sun(孙宇), Jingfang Fan(樊京芳), Hui Li(李辉), Maoxin Liu(刘卯鑫), Zhangang Han(韩战钢), Zengru Di(狄增如), and Xiaosong Chen(陈晓松). Chin. Phys. B, 2021, 30(12): 128703.
[8] Simulation of microswimmer hydrodynamics with multiparticle collision dynamics
Andreas Z?ttl. Chin. Phys. B, 2020, 29(7): 074701.
[9] Symmetry properties of fluctuations in an actively driven rotor
He Li(李赫), Xiang Yang(杨翔), Hepeng Zhang(张何朋). Chin. Phys. B, 2020, 29(6): 060502.
[10] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[11] Calculation of the infrared frequency and the damping constant (full width at half maximum) for metal organic frameworks
M Kurt, H Yurtseven, A Kurt, S Aksoy. Chin. Phys. B, 2019, 28(6): 066401.
[12] Heavy fermions in high magnetic fields
M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球). Chin. Phys. B, 2019, 28(1): 017106.
[13] Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems
Meng Qin(秦猛), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(6): 060301.
[14] Transport properties of mixing conduction in CaF2 nanocrystals under high pressure
Ting-Jing Hu(胡廷静), Xiao-Yan Cui(崔晓岩), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2018, 27(1): 016401.
[15] Collective motion of active particles in environmental noise
Qiu-shi Chen(陈秋实), Ming Ji(季铭). Chin. Phys. B, 2017, 26(9): 098903.
No Suggested Reading articles found!