Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 040501    DOI: 10.1088/1674-1056/acb0c1
GENERAL Prev   Next  

Dynamics of lump chains for the BKP equation describing propagation of nonlinear waves

Zhonglong Zhao(赵忠龙)1,†, Lingchao He(和玲超)2, and Abdul-Majid Wazwaz3
1 School of Mathematics, North University of China, Taiyuan 030051, China;
2 College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China;
3 Department of Mathematics, Saint Xavier University, Chicago, IL 60655, USA
Abstract  A large member of lump chain solutions of the (2+1)-dimensional Bogoyavlenskii-Kadomtsev-Petviashvili (BKP) equation are constructed by means of the τ-function in the form of Grammian. The lump chains are formed by periodic arrangement of individual lumps and travel with distinct group and velocities. An analytical method related dominant regions of polygon is developed to analyze the interaction dynamics of the multiple lump chains. The degenerate structures of parallel, superimposed, and molecular lump chains are presented. The interaction solutions between lump chains and kink-solitons are investigated, where the kink-solitons lie on the boundaries of dominant region determined by the constant term in the τ-function. Furthermore, the hybrid solutions consisting of lump chains and individual lumps controlled by the parameter with high rank and depth are investigated. The analytical method presented in this paper can be further extended to other integrable systems to explore complex wave structures.
Keywords:  lump chains      interaction solutions      BKP equation  
Received:  28 November 2022      Revised:  30 December 2022      Accepted manuscript online:  06 January 2023
PACS:  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
  02.30.Ik (Integrable systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12101572) and the Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2020-105).
Corresponding Authors:  Zhonglong Zhao     E-mail:  zhaozlhit@163.com,zhaozl@nuc.edu.cn

Cite this article: 

Zhonglong Zhao(赵忠龙), Lingchao He(和玲超), and Abdul-Majid Wazwaz Dynamics of lump chains for the BKP equation describing propagation of nonlinear waves 2023 Chin. Phys. B 32 040501

[1] Chang J H 2018 Theor. Math. Phys. 195 676
[2] Ma W X 2015 Phys. Lett. A 379 1975
[3] Yuan P S, Qi J X, Li Z L and An H L 2021 Chin. Phys. B 30 040503
[4] Zhang Z, Yang X Y, Li W T and Li B 2019 Chin. Phys. B 28 110201
[5] Zhao Z L and He L C 2022 Nonlinear Dyn. 108 555
[6] Zhao Z L and He L C 2022 Commun. Theor. Phys. 74 105004
[7] Zhao Z L and He L C 2019 Appl. Math. Lett. 95 114
[8] Manakov S V, Zakharov V E, Bordag L A, Its A R and Matveev V B 1977 Phys. Lett. A 63 205
[9] Ablowitz M J and Satsuma J 1978 J. Math. Phys. 19 2180
[10] Satsuma J and Ablowitz M J 1979 J. Math. Phys. 20 1496
[11] Gorshkov K A, Pelinovsky D E and Stepanyants Y A 1993 JETP 104 2704
[12] Pelinovsky D E and Stepanyants Y A 1993 JETP Lett. 57 24
[13] Pelinovsky D 1994 J. Math. Phys. 35 5820
[14] Pelinovsky D 1998 J. Math. Phys. 39 5377
[15] Chakravarty S and Zowada M 2022 J. Phys. A: Math. Theor. 55 215701
[16] Chakravarty S and Zowada M 2022 J. Phys. A: Math. Theor. 55 195701
[17] Zhang Z, Li B, Wazwaz A M and Guo Q 2022 Phys. Lett. A 424 127848
[18] Zhao Z L and He L C 2022 Nonlinear Dyn. 109 1033
[19] Yang B and Yang J K 2022 J. Nonlinear Sci. 32 52
[20] Zhang Z, Qi Z Q and Li B 2021 Appl. Math. Lett. 116 107004
[21] Zhao Z L and He L C 2021 Appl. Math. Lett. 122 107497
[22] He L C, Zhang J W and Zhao Z L 2021 Nonlinear Dyn. 106 2515
[23] Rao J G, Chow K M, Mihalache D and He J S 2021 Stud. Appl. Math. 147 1007
[24] Guo L J, Chabchoub A and He J S 2021 Physica D 426 132990
[25] Rao J G, Kanna T, Mihalache D and He J S 2022 Physica D 439 13
[26] Rao J G, Fokas A S and He J S 2021 J. Nonlinear Sci. 31 67
[27] Li M, Fu H M and Wu C F 2020 Stud. Appl. Math. 145 97
[28] Stepanyants Y A, Zakharov D V and Zakharov V E 2022 Radiophys Quantum El. 64 665
[29] Lester C, Gelash A, Zakharov D and Zakharov V 2021 Stud. Appl. Math. 147 1425
[30] Tajiri M and Murakami Y 1989 J. Phys. Soc. Jpn. 58 3029
[31] Zaitsev A A 1983 Sov. Phys. Dokl. 28 720
[32] Adamashvili G T and Kaup D J 2004 Phys. Rev. E 70 066616
[33] Reigada R, Sancho J M, Iba? nes M and Tsironis G P 2001 J. Phys. A: Math. Gen. 34 8465
[34] Zhang Z, Li B, Chen L C and Guo Q 2022 Nonlinear Dyn. 108 4157
[35] Zhang Z, Li B, Chen L C, Guo Q and Stepanyants Y 2022 Commun. Nonlinear Sci. Numer. Simul. 112 106555
[36] Bogoyavleskii O I 1990 Lett. Nuovo Cimento Math. USSR. Izv. 34 245
[37] Calogero F 1975 Lett. Nuovo Cimento 14 43
[38] Xie X Y, Tian B, Sun W R, Wang M and Wang Y P 2015 Mod. Phys. Lett. B 29 1550192
[39] Estevez P G and Hernaez G A 2000 J. Phys. A: Math. Gen. 33 2131
[40] Lu Z S and Zhang H Q 2003 Chaos Solitons Fractals 17 669
[41] Wang C J and Fang H 2017 Comput. Math. Appl. 74 3296
[42] Zhao Z L, Yue J and He L C 2022 Appl. Math. Lett. 133 108294
[43] Yuan F, He J S and Chen Y 2021 Chin. J. Phys. 71 190
[44] He L C, Zhang J W and Zhao Z L 2022 Chinese J. Phys. 79 225
[45] Hirota R 2004 The direct method in soliton theory (Cambridge: Cambridge University Press)
[46] Wazwaz A M 2022 Nonlinear Dyn. 109 1929
[47] Wazwaz A M 2020 Phys. Lett. A 384 126787
[48] Wang C J and Fang H 2022 Nonlinear Dyn. 100 583
[49] Chakravarty S and Kodama Y 2008 J. Phys. A: Math. Theor. 41 275209
[50] Akhmediev N and Korneev V I 1986 Theor. Math. Phys. 69 1089
[51] Kuznetsov E A 1977 Sov. Phys. Dokl. 22 507
[52] Ma Y C 1979 Stud. Appl. Math. 60 43
[53] Lou S Y 2020 J. Phys. Commun. 4 041002
[54] Yan Z W and Lou S Y 2020 Commun. Nonlinear Sci. Numer. Simul. 91 105425
[55] Zhang Z, Yang X Y and Li B 2020 Nonlinear Dyn. 100 1551
[1] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[2] Residual symmetries, consistent-Riccati-expansion integrability, and interaction solutions of a new (3+1)-dimensional generalized Kadomtsev—Petviashvili equation
Jian-Wen Wu(吴剑文), Yue-Jin Cai(蔡跃进), and Ji Lin(林机). Chin. Phys. B, 2022, 31(3): 030201.
[3] Rogue waves of a (3+1)-dimensional BKP equation
Yu-Qiang Yuan(袁玉强), Xiao-Yu Wu(武晓昱), and Zhong Du(杜仲). Chin. Phys. B, 2022, 31(12): 120202.
[4] Rational solutions and interaction solutions for (2 + 1)-dimensional nonlocal Schrödinger equation
Mi Chen(陈觅) and Zhen Wang(王振). Chin. Phys. B, 2020, 29(12): 120201.
[5] Resonant multiple wave solutions to some integrable soliton equations
Jian-Gen Liu(刘建根), Xiao-Jun Yang(杨小军), Yi-Ying Feng(冯忆颖). Chin. Phys. B, 2019, 28(11): 110202.
[6] Residual symmetry, interaction solutions, and conservation laws of the (2+1)-dimensional dispersive long-wave system
Ya-rong Xia(夏亚荣), Xiang-peng Xin(辛祥鹏), Shun-Li Zhang(张顺利). Chin. Phys. B, 2017, 26(3): 030202.
No Suggested Reading articles found!