|
|
Dynamics of lump chains for the BKP equation describing propagation of nonlinear waves |
Zhonglong Zhao(赵忠龙)1,†, Lingchao He(和玲超)2, and Abdul-Majid Wazwaz3 |
1 School of Mathematics, North University of China, Taiyuan 030051, China; 2 College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China; 3 Department of Mathematics, Saint Xavier University, Chicago, IL 60655, USA |
|
|
Abstract A large member of lump chain solutions of the (2+1)-dimensional Bogoyavlenskii-Kadomtsev-Petviashvili (BKP) equation are constructed by means of the τ-function in the form of Grammian. The lump chains are formed by periodic arrangement of individual lumps and travel with distinct group and velocities. An analytical method related dominant regions of polygon is developed to analyze the interaction dynamics of the multiple lump chains. The degenerate structures of parallel, superimposed, and molecular lump chains are presented. The interaction solutions between lump chains and kink-solitons are investigated, where the kink-solitons lie on the boundaries of dominant region determined by the constant term in the τ-function. Furthermore, the hybrid solutions consisting of lump chains and individual lumps controlled by the parameter with high rank and depth are investigated. The analytical method presented in this paper can be further extended to other integrable systems to explore complex wave structures.
|
Received: 28 November 2022
Revised: 30 December 2022
Accepted manuscript online: 06 January 2023
|
PACS:
|
05.45.Yv
|
(Solitons)
|
|
02.30.Jr
|
(Partial differential equations)
|
|
02.30.Ik
|
(Integrable systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12101572) and the Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2020-105). |
Corresponding Authors:
Zhonglong Zhao
E-mail: zhaozlhit@163.com,zhaozl@nuc.edu.cn
|
Cite this article:
Zhonglong Zhao(赵忠龙), Lingchao He(和玲超), and Abdul-Majid Wazwaz Dynamics of lump chains for the BKP equation describing propagation of nonlinear waves 2023 Chin. Phys. B 32 040501
|
[1] Chang J H 2018 Theor. Math. Phys. 195 676 [2] Ma W X 2015 Phys. Lett. A 379 1975 [3] Yuan P S, Qi J X, Li Z L and An H L 2021 Chin. Phys. B 30 040503 [4] Zhang Z, Yang X Y, Li W T and Li B 2019 Chin. Phys. B 28 110201 [5] Zhao Z L and He L C 2022 Nonlinear Dyn. 108 555 [6] Zhao Z L and He L C 2022 Commun. Theor. Phys. 74 105004 [7] Zhao Z L and He L C 2019 Appl. Math. Lett. 95 114 [8] Manakov S V, Zakharov V E, Bordag L A, Its A R and Matveev V B 1977 Phys. Lett. A 63 205 [9] Ablowitz M J and Satsuma J 1978 J. Math. Phys. 19 2180 [10] Satsuma J and Ablowitz M J 1979 J. Math. Phys. 20 1496 [11] Gorshkov K A, Pelinovsky D E and Stepanyants Y A 1993 JETP 104 2704 [12] Pelinovsky D E and Stepanyants Y A 1993 JETP Lett. 57 24 [13] Pelinovsky D 1994 J. Math. Phys. 35 5820 [14] Pelinovsky D 1998 J. Math. Phys. 39 5377 [15] Chakravarty S and Zowada M 2022 J. Phys. A: Math. Theor. 55 215701 [16] Chakravarty S and Zowada M 2022 J. Phys. A: Math. Theor. 55 195701 [17] Zhang Z, Li B, Wazwaz A M and Guo Q 2022 Phys. Lett. A 424 127848 [18] Zhao Z L and He L C 2022 Nonlinear Dyn. 109 1033 [19] Yang B and Yang J K 2022 J. Nonlinear Sci. 32 52 [20] Zhang Z, Qi Z Q and Li B 2021 Appl. Math. Lett. 116 107004 [21] Zhao Z L and He L C 2021 Appl. Math. Lett. 122 107497 [22] He L C, Zhang J W and Zhao Z L 2021 Nonlinear Dyn. 106 2515 [23] Rao J G, Chow K M, Mihalache D and He J S 2021 Stud. Appl. Math. 147 1007 [24] Guo L J, Chabchoub A and He J S 2021 Physica D 426 132990 [25] Rao J G, Kanna T, Mihalache D and He J S 2022 Physica D 439 13 [26] Rao J G, Fokas A S and He J S 2021 J. Nonlinear Sci. 31 67 [27] Li M, Fu H M and Wu C F 2020 Stud. Appl. Math. 145 97 [28] Stepanyants Y A, Zakharov D V and Zakharov V E 2022 Radiophys Quantum El. 64 665 [29] Lester C, Gelash A, Zakharov D and Zakharov V 2021 Stud. Appl. Math. 147 1425 [30] Tajiri M and Murakami Y 1989 J. Phys. Soc. Jpn. 58 3029 [31] Zaitsev A A 1983 Sov. Phys. Dokl. 28 720 [32] Adamashvili G T and Kaup D J 2004 Phys. Rev. E 70 066616 [33] Reigada R, Sancho J M, Iba? nes M and Tsironis G P 2001 J. Phys. A: Math. Gen. 34 8465 [34] Zhang Z, Li B, Chen L C and Guo Q 2022 Nonlinear Dyn. 108 4157 [35] Zhang Z, Li B, Chen L C, Guo Q and Stepanyants Y 2022 Commun. Nonlinear Sci. Numer. Simul. 112 106555 [36] Bogoyavleskii O I 1990 Lett. Nuovo Cimento Math. USSR. Izv. 34 245 [37] Calogero F 1975 Lett. Nuovo Cimento 14 43 [38] Xie X Y, Tian B, Sun W R, Wang M and Wang Y P 2015 Mod. Phys. Lett. B 29 1550192 [39] Estevez P G and Hernaez G A 2000 J. Phys. A: Math. Gen. 33 2131 [40] Lu Z S and Zhang H Q 2003 Chaos Solitons Fractals 17 669 [41] Wang C J and Fang H 2017 Comput. Math. Appl. 74 3296 [42] Zhao Z L, Yue J and He L C 2022 Appl. Math. Lett. 133 108294 [43] Yuan F, He J S and Chen Y 2021 Chin. J. Phys. 71 190 [44] He L C, Zhang J W and Zhao Z L 2022 Chinese J. Phys. 79 225 [45] Hirota R 2004 The direct method in soliton theory (Cambridge: Cambridge University Press) [46] Wazwaz A M 2022 Nonlinear Dyn. 109 1929 [47] Wazwaz A M 2020 Phys. Lett. A 384 126787 [48] Wang C J and Fang H 2022 Nonlinear Dyn. 100 583 [49] Chakravarty S and Kodama Y 2008 J. Phys. A: Math. Theor. 41 275209 [50] Akhmediev N and Korneev V I 1986 Theor. Math. Phys. 69 1089 [51] Kuznetsov E A 1977 Sov. Phys. Dokl. 22 507 [52] Ma Y C 1979 Stud. Appl. Math. 60 43 [53] Lou S Y 2020 J. Phys. Commun. 4 041002 [54] Yan Z W and Lou S Y 2020 Commun. Nonlinear Sci. Numer. Simul. 91 105425 [55] Zhang Z, Yang X Y and Li B 2020 Nonlinear Dyn. 100 1551 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|