Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 056701    DOI: 10.1088/1674-1056/acb2c0
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Continuous modulation of charge-spin conversion by electric field in Pt/Co2FeSi/Pb(Mg1/3Nb2/3)O3-Pb0.7Ti0.3O3 heterostructures

Yibing Zhao(赵逸冰)1,2,†, Xiaoxiao Fang(方晓筱)1,2,†, Zhirui Wang(王志睿)1,2, Miao Cheng(程淼)1,2, Yongjia Tan(谭永嘉)1,2, Dongxiong Wei(韦东雄)1,2, Changjun Jiang(蒋长军)1,2, and Jinli Yao(幺金丽)1,2,‡
1 Key Laboratory for Magnetism and Magnetic Materials(Ministry of Education), Lanzhou University, Lanzhou 730000, China;
2 Key Laboratory of Special Function Materials and Structure Design(Ministry of Education), Lanzhou University, Lanzhou 730000, China
Abstract  The half-metallic Heusler alloy Co$_{2}$FeSi is an ideal material in spintronic devices due to its higher spin polarization, higher Curie temperature and lower damping parameters. In this work, the dynamic magnetism of Co$_{2}$FeSi is modulated by electric field and it is demonstrated that the charge-spin conversion efficiency $\xi $ is continuous and controllable by the electric field. We further find an extremely high $\xi $ in ferromagnetic/ferroelectric (FM/FE) heterostructures, which could be ascribed to interfacial effect in FM/FE interface. Moreover, we investigate that the charge-spin conversion efficiency varies with the electric field in a butterfly-like behavior, which accords with the $S$-$E$ curve of Pb(Mg$_{1/3}$Nb$_{2/3})$O$_{3}$-Pb$_{0.7}$Ti$_{0.3}$O$_{3}$(PMN-PT) and could be attributed to strain effect. The modulation of charge-spin conversion efficiency in FM/FE heterostructures via electric field presents a profound potential for next-generation spintronic devices and applications of current-induced magnetization switching.
Keywords:  Heusler alloy      electric-field modulation      strain effect      Rashba effect  
Received:  24 July 2022      Revised:  12 January 2023      Accepted manuscript online:  13 January 2023
PACS:  67.30.er (Magnetic properties, NMR)  
  67.80.dk (Magnetic properties, phases, and NMR)  
  75.50.-y (Studies of specific magnetic materials)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974149) and the Natural Science Foundation of Gansu Province (Grant No. 21JR7RA472).
Corresponding Authors:  Jinli Yao     E-mail:  yaojl@lzu.edu.cn

Cite this article: 

Yibing Zhao(赵逸冰), Xiaoxiao Fang(方晓筱), Zhirui Wang(王志睿), Miao Cheng(程淼), Yongjia Tan(谭永嘉), Dongxiong Wei(韦东雄), Changjun Jiang(蒋长军), and Jinli Yao(幺金丽) Continuous modulation of charge-spin conversion by electric field in Pt/Co2FeSi/Pb(Mg1/3Nb2/3)O3-Pb0.7Ti0.3O3 heterostructures 2023 Chin. Phys. B 32 056701

[1] Manchon A, Železny J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K and Gambardella P 2019 Rev. Mod. Phys. 91 035004
[2] Hirsch J E 1999 Phys. Rev. Lett. 83 1834
[3] Shao Q, Yu G, Lan Y W, Shi Y, Li M Y, Zheng C, Zhu X, Li L J, Amiri P K and Wang K L 2016 Nano Lett. 16 7514
[4] Ramaswamy R, Lee J M, Cai K and Yang H 2018 Appl. Phys. Rev. 5 031107
[5] Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S and Ohno H 2013 Nat. Mater. 12 240
[6] Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blügel S, Auffret S, Boulle O, Gaudin G and Gambardella P 2013 Nat. Nanotechnol. 8 587
[7] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555
[8] Schulz T, Lee K, Krüger B, Conte R Lo, Karnad G V, Garcia K, Vila L, Ocker B, Ravelosona D and Kläui M 2017 Phys. Rev. B 95 224409
[9] Manchon A, Koo H C, Nitta J, Frolov S M and Duine R A 2015 Nat. Mater. 14 871
[10] Brataas A, Tserkovnyak Y, Bauer G E W and Halperin B I 2002 Phys. Rev. B 66 060404
[11] Azzawi S, Ganguly A, Tokaç M, Rowan-Robinson R M, Sinha J, Hindmarch A T, Barman A and Atkinson D 2016 Phys. Rev. B 93 054402
[12] Kumar A, Akansel S, Stopfel H, Fazlali M, Akerman J, Brucas R and Svedlindh P 2017 Phys. Rev. B 95 064406
[13] Barati E and Cinal M 2017 Phys. Rev. B 95 134440
[14] Yang H, Li Y and Bailey W E 2016 Appl. Phys. Lett. 108 242404
[15] Jiang C, Wang F, Dong C, Zhou C, Wu L and Xue D 2016 Appl. Phys. Lett. 108 032401
[16] Dong C, Guo D, Wu L, Wang F, Jiang C, Jia C and Xue D 2014 Appl. Phys. Lett. 104 062403
[17] Wu L, Zhang C, Dong C, Jia C, Jiang C and Xue D 2015 Appl. Phys. Lett. 107 122905
[18] Lv W, Jia Z, Wang B, Lu Y, Luo X, Zhang B, Zeng Z and Liu Z 2018 ACS Appl. Mater. Interfaces 10 2843
[19] Filianina M, Hanke J P, Lee K, Han D S, Jaiswal S, Rajan A, Jakob G, Mokrousov Y and Klaeui M 2020 Phys. Rev. Lett. 124 217701
[20] Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H and Wang K 2017 Nat. Mater. 16 712
[21] Trudel S, Gaier O, Hamrle J and Hillebrands B 2010 J. Phys. D: Appl. Phys. 43 193001
[22] De Groot R A, Mueller F M, Van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[23] Oogane M, Yilgin R, Shinano M, Yakata S, Sakuraba Y, Ando Y and Miyazaki T 2007 J. Appl. Phys. 101 09J501
[24] Ramaswamy R, Lee J M, Cai K and Yang H 2018 Appl. Phys. Rev. 5 031107
[25] Wang Y, Ramaswamy R and Yang H 2018 J. Phys. D: Appl. Phys. 51 273002
[26] Yang W L, Wei J W, Wan C H, Xing Y W, Yan Z R, Wang X, Fang C, Guo C Y, Yu G Q and Han X F 2020 Phys. Rev. B 101 064412
[27] Liu L, Moriyama T, Ralph D C and Buhrman R A 2011 Phys. Rev. Lett. 106 036601
[28] Nan T, Emori S, Boone C T, Wang X, Oxholm T M, Jones J G, Howe B M, Brown G J and Sun N X 2015 Phys. Rev. B 91 214416
[29] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555
[30] Pai C F, Liu L, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Appl. Phys. Lett. 101 122404
[31] Wang Y, Ramaswamy R, Motapothula M, Narayanapillai K, Zhu D, Yu J, Venkatesan T and Yang H 2017 Nano Lett. 17 7659
[32] Wang Y, Deorani P, Banerjee K, Koirala N, Brahlek M, Oh S and Yang H 2015 Phys. Rev. Lett. 114 257202
[33] Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N and Ralph D C 2014 Nature 511 449
[34] Yu D, Luo S, Li Y, Koval V and Jia C 2019 Phys. Rev. B 100 104410
[35] Zhang C, Wang F, Dong C, Gao C, Jia C, Jiang C and Xue D 2015 Nanoscale 7 4187
[36] Zhang S, Zhao Y G, Li P S, Yang J, Rizwan S, Zhang J, Seidel J, Qu T, Yang Y J, Luo Z L, He Q, Zou T, Chen Q P, Wang J W, Yang L F, Sun Y, Wu Y Z, Xiao X, Jin X F, Huang J, Gao C, Han X F and Ramesh R 2012 Phys. Rev. Lett. 108 137203
[37] Jiang C, Zhang C, Dong C, Guo D and Xue D 2015 Appl. Phys. Lett. 106 122406
[1] Strain effects on Li+ diffusion in solid electrolyte interphases: A molecular dynamics study
Xiang Ji(姬祥) and Junqian Zhang(张俊乾). Chin. Phys. B, 2023, 32(6): 066601.
[2] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[3] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[4] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[5] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[6] Effect of strain on electrochemical performance of Janus MoSSe monolayer anode material for Li-ion batteries: First-principles study
Guoqing Wang(王国庆), Wenjing Qin(秦文静), and Jing Shi(石晶). Chin. Phys. B, 2021, 30(4): 046301.
[7] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[8] The unique magnetic damping enhancement in epitaxial Co2Fe1-xMnxAl films
Shu-Fa Li(李树发), Chu-Yuan Cheng(程樗元), Kang-Kang Meng(孟康康), Chun-Lei Chen(陈春雷). Chin. Phys. B, 2019, 28(9): 097502.
[9] Electronic properties of size-dependent MoTe2/WTe2 heterostructure
Jing Liu(刘婧), Ya-Qiang Ma(马亚强), Ya-Wei Dai(戴雅薇), Yang Chen(陈炀), Yi Li(李依), Ya-Nan Tang(唐亚楠), Xian-Qi Dai(戴宪起). Chin. Phys. B, 2019, 28(10): 107101.
[10] Versatile GaInO3-sheet with strain-tunable electronic structure, excellent mechanical flexibility, and an ideal gap for photovoltaics
Hui Du(杜慧), Shijie Liu(刘世杰), Guoling Li(李国岭), Liben Li(李立本), Xueshen Liu(刘学深), Bingbing Liu(刘冰冰). Chin. Phys. B, 2019, 28(1): 016105.
[11] Effect of Sb-doping on martensitic transformation and magnetocaloric effect in Mn-rich Mn50Ni40Sn10-xSbx (x=1, 2, 3, and 4) alloys
Ishfaq Ahmad Shah, Najam ul Hassan, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Guizhou Xu(徐桂舟), Feng Xu(徐锋). Chin. Phys. B, 2017, 26(1): 017501.
[12] Ultrafast optical probe of coherent acoustic phonons in Co2MnAl Heusler film
Wei Yan(闫炜), Hai-Long Wang(王海龙), Jian-Hua Zhao(赵建华), Xin-Hui Zhang(张新惠). Chin. Phys. B, 2017, 26(1): 016802.
[13] Interplay of Rashba effect and spin Hall effect in perpendicular Pt/Co/MgO magnetic multilayers
Yun-Chi Zhao(赵云驰), Guang Yang(杨光), Bo-Wen Dong(董博闻), Shou-Guo Wang(王守国), Chao Wang(王超), Young Sun(孙阳), Jing-Yan Zhang(张静言), Guang-Hua Yu(于广华). Chin. Phys. B, 2016, 25(7): 077501.
[14] Magnetoresistance and exchange bias in high Mn content melt-spun Mn46Ni42Sn11Sb1 alloy ribbon
Qingxue Huang(黄庆学), Fenghua Chen(陈峰华), Mingang Zhang(张敏刚), Xiaohong Xu(许小红). Chin. Phys. B, 2016, 25(5): 057305.
[15] Electronic structures and magnetisms of the Co2TiSb1-xSnx (x=0, 0.25, 0.5) Heusler alloys: A theoretical study of the shape-memory behavior
Wang Li-Ying (王立英), Dai Xue-Fang (代学芳), Wang Xiao-Tian (王啸天), Lin Ting-Ting (林婷婷), Chen Lei (陈磊), Liu Ran (刘然), Cui Yu-Ting (崔玉亭), Liu Guo-Dong (刘国栋). Chin. Phys. B, 2015, 24(12): 126201.
No Suggested Reading articles found!