CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Ultrafast optical probe of coherent acoustic phonons in Co2MnAl Heusler film |
Wei Yan(闫炜), Hai-Long Wang(王海龙), Jian-Hua Zhao(赵建华), Xin-Hui Zhang(张新惠) |
State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract In this work, pronounced oscillations in the time-resolved reflectivity of Heusler alloy Co2MnAl films which are epitaxially grown on GaAs substrates are observed and investigated as a function of film thickness, probe wavelength, external magnetic field and temperature. Our results suggest that the oscillation response at 24.5 GHz results from the coherent phonon generation in Co2MnAl film and can be explained by a propagating strain pulse model. From the probe wavelength dependent oscillation frequency, a sound velocity of (3.85±0.1)×103 m/s at 800 nm for the epitaxial Co2MnAl film is determined at room temperature. The detected coherent acoustic phonon generation in Co2MnAl reported in this work provides a valuable reference for exploring the high-speed magnetization manipulation via magnetoelastic coupling for future spintronic devices based on Heusler alloy films.
|
Received: 22 July 2016
Revised: 18 October 2016
Accepted manuscript online:
|
PACS:
|
68.60.Bs
|
(Mechanical and acoustical properties)
|
|
75.50.Cc
|
(Other ferromagnetic metals and alloys)
|
|
78.47.J-
|
(Ultrafast spectroscopy (<1 psec))
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB922303) and the National Natural Science Foundation of China (Grant No. 61334006). |
Corresponding Authors:
Xin-Hui Zhang
E-mail: xinhuiz@semi.ac.cn
|
Cite this article:
Wei Yan(闫炜), Hai-Long Wang(王海龙), Jian-Hua Zhao(赵建华), Xin-Hui Zhang(张新惠) Ultrafast optical probe of coherent acoustic phonons in Co2MnAl Heusler film 2017 Chin. Phys. B 26 016802
|
[1] |
de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
|
[2] |
Kübler J, Williams A R and Sommers C B 1983 Phys. Rev. B 28 1745
|
[3] |
Galanakis I, Dederichs P H and Papanikolaou N 2002 Phys. Rev. B 66 174429
|
[4] |
Ishida S, Sugimura S, Fujii S and Asano S 1991 J. Phys.:Condens. Matter 3 5793
|
[5] |
Felser C, Fecher G H and Balke B 2007 Angew. Chem., Int. Ed. 46 668
|
[6] |
Jourdan M, Minar J, Braun J, Kronenberg A, Chadov S, Balke B, Gloskovskii A, Kolbe M, Elmers H, Schonhense G, Ebert H, Felser C and Klaui M 2014 Nat. Commun. 5 3974
|
[7] |
Liu H X, Kawami T, Moges K, Uemura T, Yamamoto M, Shi F and Voyles P M 2015 J. Phys. D:Appl. Phys. 48 164001
|
[8] |
Kumary T B, Ghosh B, Awadhiya B and Verma A K 2016 J. Semi. 37 014003
|
[9] |
Bombeck M, Jäger J V, Scherbakov A V, Linnik T, Yakovlev D R, Liu X, Furdyna J K, Akimov A V and Bayer M 2013 Phys. Rev. B 87 060302(R)
|
[10] |
Scherbakov A V, Salasyuk A S, Akimov A V, Liu X, Bombeck M, Brüggemann C, Yakovlev D R, Sapega V F, Furdyna J K and Bayer M 2010 Phys. Rev. Lett. 105 117204
|
[11] |
Kim J W, Vomir M and Bigot J Y 2012 Phys. Rev. Lett. 109 166601
|
[12] |
Thevenard L, Duquesne J Y, Peronne E, von Bardeleben H J, Jaffres H, Ruttala S, George J M, Lema??tre A and Gourdon C 2013 Phys. Rev. B 87 144402
|
[13] |
Jäger J V, Scherbakov A V, Glavin B A, Salasyuk A S, Campion R P, Rushforth A W, Yakovlev D R, Akimov A V and Bayer M 2015 Phys. Rev. B 92 020404(R)
|
[14] |
Kovalenko O, Pezeril T and Temnov V V 2013 Phys. Rev. Lett. 110 266602
|
[15] |
Thomsen C, Grahn H T, Maris H J and Tauc J 1986 Phys. Rev. B 34 4129
|
[16] |
Huang Y K, Chern G W, Sun C K, Smorchkova Y, Keller S, Mishra U and DenBaars S P 2001 Appl. Phys. Lett. 79 3361
|
[17] |
Bozovic I, Schneider M, Xu Y, Sobolewski R, Ren Y H, Lüpke G, Demsar J, Taylor A J and Onellion M 2004 Phys. Rev. B 69 132503
|
[18] |
Qian W, Yan H, Wang J J, Zou Y H, Lin L, Wu J L 1998 Chin. Phys. Lett. 15 834
|
[19] |
Lim D, Averitt R D, Demsar J, Taylor A J, Hur N and Cheong S W 2003 Appl. Phys. Lett. 83 4800
|
[20] |
Wu S, Geiser P, Jun J, Karpinski J, Park J R and Sobolewski R 2006 Appl. Phys. Lett. 88 041917
|
[21] |
Yamamoto A, Mishina T, Masumoto Y and Nakayama M 1994 Phys. Rev. Lett. 73 740
|
[22] |
Sun C K, Liang J C and Yu X Y 2000 Phys. Rev. Lett. 84 179
|
[23] |
Matsuda O, Tachizaki T, Fukui T, Baumberg J J and Wright O B 2005 Phys. Rev. B 71 115330
|
[24] |
Thomsen C, Strait J, Vardeny Z, Maris H J, Tauc J and Hauser J J 1984 Phys. Rev. Lett. 53 989
|
[25] |
Bartels A, Dekorsky T, Kurds H and Kohler K 1999 Phys. Rev. Lett. 82 1044
|
[26] |
Cummings M D and Elezzabi A Y 2001 Appl. Phys. Lett. 79 770
|
[27] |
Devos A, Côte R, Caruyer G and Lefévre A 2005 Appl. Phys. Lett. 86 211903
|
[28] |
Liu W, Xie W, Guo W, Xu D, Hu T, Ma T, Yuan H, Wu Y, Zhao H, Shen X and Chen Z 2014 Phys. Rev. B 89 201201
|
[29] |
Wang J and Guo C 2007 Solid State Commun. 144 198
|
[30] |
Manchon A, Li Q, Xu L and Zhang S 2012 Phys. Rev. B 85 064408
|
[31] |
Djordjevic M, Lüttich M, Moschkau P, Guderian P, Kampfrath T, Ulbrich R G, Münzenberg M, Felsch W and Moodera J S 2006 Phys. Stat. Sol. 3 1347
|
[32] |
Xu Y, Qi J, Miller J, Cho Y J, Liu X, Furdyna J K, Shahbazyan T V and Tolk Norman 2008 Phys. Stat. Sol. 5 2632
|
[33] |
Ge S, Liu X, Qiao X, Wang Q, Xu Z, Qiu J, Tan P H, Zhao J and Sun D 2014 Sci. Rep. 4 5722
|
[34] |
Yamaguchi S and Tahara T 2008 J. Raman Spectrosc. 39 1703
|
[35] |
Mariager S O, Caviezel A, Beaud P, Quitmann C and Ingold G 2012 Appl. Phys. Lett. 100 261911
|
[36] |
Alers G A and Fleury P A 1963 Phys. Rev. 129 2425
|
[37] |
Wang J and Guo C 2007 Phys. Rev. B 75 184304
|
[38] |
Blakemore J S 1982 J. Appl. Phys. 53 R123
|
[39] |
Miller J K, Qi J, Xu Y, Cho Y J, Liu X, Furdyna J K, Perakis I, Shahbazyan T V, and Tolk N 2006 Phys. Rev. B 74 113313
|
[40] |
Cheng C, Meng K, Li S, Zhao J and Lai T 2013 Appl. Phys. Lett. 103 232406
|
[41] |
Aspnes D E, Keiso S M, Logan R A and Bhat R 1986 J. Appl. Phys. 60 754
|
[42] |
Shreder E I, Svyazhin A D and Belozerova K A 2013 Phys. Met. Metallogr. 114 904
|
[43] |
Kudryavtsev Yu V, Lee Y P and Kim K W 1998 J. Appl. Phys. 83 1575
|
[44] |
Talbayev D, Trugman S A, Balatsky A V, Kimura T, Taylor A J and Averitt R D 2008 Phys. Rev. Lett. 101 097603
|
[45] |
Doig K I, Aguesse F, Axelsson A K, Alford N M, Nawaz S, Palkar V R, Jones S P P, Johnson R D, Synowicki R A and Lloyd-Hughes J 2013 Phys. Rev. B 88 094425
|
[46] |
Sushkov A B, Aguilar R V, Cheong S W and Drew H D 2007 Phys. Rev. Lett. 98 027202
|
[47] |
Yuan H C, Nie S H, Ma T P, Zhang Z, Zheng Z, Chen Z H, Wu Y Z, Zhao J H, Zhao H B and Chen L Y 2014 Appl. Phys. Lett. 105 072413
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|