Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 040504    DOI: 10.1088/1674-1056/ac7bff
GENERAL Prev   Next  

Diffusive field coupling-induced synchronization between neural circuits under energy balance

Ya Wang(王亚)1,2, Guoping Sun(孙国平)1, and Guodong Ren(任国栋)1,†
1 Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China;
2 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
Abstract  When charged bodies come up close to each other, the field energy is diffused and their states are regulated under bidirectional field coupling. For biological neurons, the diversity in intrinsic electric and magnetic field energy can create synaptic connection for fast energy balance and synaptic current is passed across the synapse channel; as a result, energy is pumped and exchanged to induce synchronous firing modes. In this paper, a capacitor is used to connect two neural circuits and energy propagation is activated along the coupling channel. The intrinsic field energy in the two neural circuits is exchanged and the coupling intensity is controlled adaptively using the Heaviside function. Some field energy is saved in the coupling channel and is then sent back to the coupled neural circuits to reach energy balance. Therefore the circuits can reach possible energy balance and complete synchronization. It is possible that the diffusive energy of the coupled neurons inspires the synaptic connections to grow stronger for possible energy balance.
Keywords:  field coupling      synchronization      neural circuits      Hamilton energy      synapse connection  
Received:  12 April 2022      Revised:  07 June 2022      Accepted manuscript online:  27 June 2022
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12062009) and the Gansu National Science of Foundation, China (Grant No. 20JR5RA473).
Corresponding Authors:  Guodong Ren     E-mail:  rengd@lut.edu.cn

Cite this article: 

Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋) Diffusive field coupling-induced synchronization between neural circuits under energy balance 2023 Chin. Phys. B 32 040504

[1] Lechner M, Hasani R, Amini A, Henzinger T A, Rus D and Grosu R 2020 Nat. Mach. Intell. 2 642
[2] Kouh M and Poggio T 2008 Neural Comput. 20 1427
[3] Kohl J, Autry A E and Dulac C 2017 Bioessays 39 1
[4] de Jong J W, Afjei S A, Dorocic I P, Peck J R, Liu C, Kim C K, Tian L, Deisseroth K and Lammel S 2019 Neuron 101 133
[5] Xiang Z, Tang C, Yan L, Chang C and Liu G 2020 Chin. Phys. B 29 108701
[6] McAllister A K, Katz L C and Lo D C 1999 Ann. Rev. Neurosci. 22 295
[7] Ma J, Yang Z Q, Yang L J and Tang J 2019 J. Zhejiang Univ. Sci. A 20 639
[8] Liu Z L, Wang C N, Jin W Y and Ma J 2019 Nonlinear Dyn. 97 2661
[9] Yao Z, Zhou P, Zhu Z G and Ma 2021 Neurocomputing 423 518
[10] Zhang X F, Ma J, Xu Y and Ren G D 2021 Acta Phys. Sin. 70 090502 (in Chinese)
[11] Zhang Y, Wang C N, Tang J, Ma J and Ren G D 2020 Sci. China Technol. Sci. 63 2328
[12] Zhang X F, Wang C, Ma J and Ren G D 2020 Modern Phys. Lett. B 34 2050267
[13] Gambuzza L V, Buscarino A, Fortuna L and Frasca M 2015 IEEE Transactions on Circuits and Systems I: Regular Papers 62 1175
[14] Shao N, Zhang S B and Shao S Y 2019 Acta Phys. Sin. 68 198502 (in Chinese)
[15] Bao H, Zhang Y, Liu W and Bao B 2020 Nonlinear Dyn. 100 937
[16] Kyprianidis I, Papachristou V, Stouboulos I N and Volos C 2012 WSEAS Transactions on Systems 11 516
[17] Liu Z L, Zhou P, Ma J, Hobiny A and Alzahrani F 2020 Chaos, Solitons & Fractals 131 109533
[18] Zhou P, Zhang X and Ma J 2022 Nonlinear Dyn. 108 1681
[19] Xie Y, Yao Z and Ma J 2022 Frontiers of Information Technology & Electronic Engineering
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[3] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[4] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[7] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[8] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[9] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[10] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[11] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[12] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[13] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[14] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[15] Dynamic modeling and aperiodically intermittent strategy for adaptive finite-time synchronization control of the multi-weighted complex transportation networks with multiple delays
Ning Li(李宁), Haiyi Sun(孙海义), Xin Jing(靖新), and Zhongtang Chen(陈仲堂). Chin. Phys. B, 2021, 30(9): 090507.
No Suggested Reading articles found!