Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬)1,2, Yang Zhang(张洋)1,2, Zaiyang Yu(鱼在洋)1,2,3, Zhiqiang Xiong(熊志强)1,2, Hui Luo(罗晖)1,2, and Zhiguo Wang(汪之国)1,2,†
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; 2 Hunan Key Laboratory of Mechanism and Technology of Quantum Information, National University of Defense Technology, Changsha 410073, China; 3 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710049, China
Abstract Low-noise high-stability current sources have essential applications such as neutron electric dipole moment measurement and high-stability magnetometers. Previous studies mainly focused on frequency noise above 0.1 Hz while less on the low-frequency noise/drift. We use double resonance alignment magnetometers (DRAMs) to measure and suppress the low-frequency noise of a homemade current source (CS) board. The CS board noise level is suppressed by about 10 times in the range of 0.001-0.1 Hz and is reduced to at 0.001 Hz. The relative stability of CS board can reach . In addition, the DRAM shows a better resolution and accuracy than a commercial 7.5-digit multimeter when measuring our homemade CS board. Further, by combining the DRAM with a double resonance orientation magnetometer, we may realize a low-noise CS in the 0.001-1000 Hz range.
(Magnetometers for susceptibility, magnetic moment, and magnetization measurements)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174446 and 61671458).
Corresponding Authors:
Zhiguo Wang
E-mail: maxborn@nudt.edu.cn
Cite this article:
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋),Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国) Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers 2023 Chin. Phys. B 32 040601
[1] Kitching J, Donley E A, Knappe S, Hummon M, Dellis A T, Sherman J, Srinivasan K, Aksyuk V A, Li Q, Westly D, Roxworthy B and Lal A 2016 J. Phys.: Conf. Ser.723 012056 [2] Afach S, Budker D, DeCamp G, et al. 2018 Phys. Dark Universe22 162 [3] Chupp T E, Fierlinger P, Ramsey-Musolf M J and Singh J T 2019 Rev. Mod. Phys.91 015001 [4] Wurm D, Beck D H, Chupp T et al. 2019 EPJ Web Conf.219 02006 [5] Allmendinger F, Heil W, Karpuk S, Kilian W, Scharth A, Schmidt U, Schnabel A, Sobolev Yu and Tullney K 2014 Phys. Rev. Lett.112 110801 [6] Terrano W A and Romalis M V 2021 Quantum Sci. Technol.7 014001 [7] Furukawa T, Inoue T, Nanao T, Yoshimi A, Tsuchiya M, Hayashi H, Uchida M and Asahi K 2011 J. Phys.: Conf. Ser.312 102005 [8] Castagna N, Bison G, Di Domenico G, Hofer A, Knowles P, Macchione C, Saudan H and Weis A 2009 Appl. Phys. B96 763 [9] Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R and Lukin M D 2008 Nat. Phys.4 810 [10] Shen L, Zhang R, Wu T, Peng X, Yu S, Chen J and Guo H 2020 Rev. Sci. Instrum.91 084701 [11] Rosner M, Beck D, Fierlinger P, Filter H, Klau C, Kuchler F, Rößner P, Sturm M, Wurm D and Sun Z 2022 Appl. Phys. Lett.120 161102 [12] Chen D Y, Miao P X, Shi Y C, Cui J Z, Liu Z D, Chen J and Wang K 2022 Acta Phys. Sin.71 024202 (in Chinee) [13] Rosner M, Beck D, Fierlinger P, Filter H, Klau C, Kuchler F, Rößner P, Sturm M, Wurm D and Sun Z 2022 Appl. Phys. Lett.120 161102 [14] Ding Y, Zhang R, Zheng J, Chen J, Peng X, Wu T and Guo H 2022 Rev. Sci. Instrum.93 015003 [15] Weis A, Bison G and Pazgalev A S 2006 Phys. Rev. A74 033401 [16] Mathur B S, Tang H and Happer W 1968 Phys. Rev.171 11 [17] Di Domenico G, Bison G, Groeger S, Knowles P, Pazgalev A S, Rebetez M, Saudan H and Weis A 2006 Phys. Rev. A74 063415 [18] Breschi E, Grujić Z and Weis A 2014 Appl. Phys. B115 85 [19] Heinzel G, Rüdiger A and Schilling R 2002 http://hdl.handle.net/11858/00-001M-0000-0013-557A-5[2002] [20] Kornack T W, Smullin S J, Lee S K and Romalis M V 2007 Appl. Phys. Lett.90 223501 [21] Keshtkar A, Maghoul A and Kalantarnia A 2011 Int. J. Comput. Electr. Eng.3 507 [22] Altarev I, Bales M, Beck D H, et al. 2015 J. Appl. Phys.117 183903 [23] Gemmel C, Heil W, Karpuk S, Lenz K, Ludwig Ch, Sobolev Yu, Tullney K, Burghoff M, Kilian W, Knappe-Grüneberg S, Müller W, Schnabel A, Seifert F, Trahms L and Baeßler St 2010 Eur. Phys. J. D57 303 [24] Zhivun E 2016 Ph.D. Dissertation (Berkeley: University of California, Berkeley) [25] Fan W, Liu G, Li R, Quan W, Jiang L and Duan L 2017 Meas. Sci. Technol.28 095007 [26] Stoller S D, Happer W and Dyson F J 1991 Phys. Rev. A44 7459 [27] Golub R, Rohm R M and Swank C M 2011 Phys. Rev. A83 023402 [28] Fu Y Y and Yuan J 2017 AIP Adv.7 115315 [29] Zheng W, Gao H, Liu J G, Zhang Y, Ye Q and Swank C 2011 Phys. Rev. A84 053411 [30] Yang K, Lu J, Ma Y, Wang Z, Sun B, Wang Y and Han B 2022 IEEE Trans. Instrum. Meas.71 1501108
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.