Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 034213    DOI: 10.1088/1674-1056/acb760
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal

Gang Liu(刘刚)1,2,†, Yuanhang Li(李远航)2,3, Baonan Jia(贾宝楠)2, Yongpan Gao(高永潘)2, Lihong Han(韩利红)2, Pengfei Lu(芦鹏飞)2,3, and Haizhi Song(宋海智)4,‡
1 Beijing Key Laboratory of Space-Ground Interconnection and Convergence, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
3 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
4 Southwest Institute of Technical Physics, Chengdu 610041, China
Abstract  Photonic crystal structures have excellent optical properties, so they are widely studied in conventional optical materials. Recent research shows that high-temperature superconducting periodic structures have natural photonic crystal features and they are favourable candidates for single-photon detection. Considering that superconductors have completely different properties from conventional optical materials, we study the energy level diagram and mid-infrared 3 μm-5 μm transmission spectrum of two-dimensional superconducting photonic crystals in both superconducting and quenched states with the finite element method. The energy level diagram of the circular crystal column superconducting structure shows that the structure has a large band gap width in both states. At the same fill factor, the circular crystal column superconducting structure has a larger band gap width than the others structures. For lattice structures, the zero transmission point of the square lattice structure is robust to the incident angle and environmental temperature. Our research has guiding significance for the design of new material photonic crystals, photon modulation and detection.
Keywords:  high-temperature superconducting      mid-infrared      photonic crystal      single-photon detection  
Received:  20 October 2022      Revised:  31 December 2022      Accepted manuscript online:  31 January 2023
PACS:  42.50.-p (Quantum optics)  
  42.70.Qs (Photonic bandgap materials)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3601201), the National Natural Science Foundation of China (Grant No. 62101057), the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) (Grant No. IPOC2021ZT07).
Corresponding Authors:  Gang Liu, Haizhi Song     E-mail:  liu_g@126.com;hzsong1296@163.com

Cite this article: 

Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智) A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal 2023 Chin. Phys. B 32 034213

[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Cai Y and Dong Y 2019 IOP Conf. Ser.: Mater. Sci. Eng. 473 012024
[4] Joannopoulos J D, Villeneuve P R and Fan S 1997 Nature 386 143
[5] Yablonovitch E 1994 J. Mod. Opt. 41 173
[6] Threm D, Nazirizadeh Y and Gerken M 2012 J. Biophotonics 5 601
[7] Baker J E, Sriram R and Miller B L 2015 Lab Chip 15 971
[8] Rifat A A, Mahdiraji G A and Ahmed R 2015 IEEE Photon. J. 8 4800408
[9] Li L, Li T and Ji F 2017 Microsyst. Technol. 23 3271
[10] Xia J, Qiao Q and Zhou G 2020 Appl. Sci. 10 7080
[11] Choi H Y, Park K S and Park S J 2008 Opt. Lett. 33 2455
[12] Hameed M F O, Azab M Y and Heikal A M 2015 IEEE Photon. Technol. Lett. 28 59
[13] Chu S, Olmedo M and Yang Z 2008 Appl. Phys. Lett. 93 181106
[14] Wu D K C, Kuhlmey B T and Eggleton B J 2009 Opt. Lett. 34 322
[15] Goyal A K, Dutta H S and Pal S 2017 J. Phys. D: Appl. Phys. 50 203001
[16] Xu H, Wu P and Zhu C 2013 J. Mater. Chem. C 1 6087
[17] Schmidt M A, Argyros A and Sorin F 2015 Adv. Opt. Mater. 4 13
[18] Russell P 2003 Science 299 358
[19] Skivesen N, Tetu A and Kristensen M 2007 Opt. Express 15 3169
[20] Bao J, Xiao J and Fan L 2014 Opt. Commun. 329 109
[21] Dutta H S, Goyal A K and Srivastava V 2016 Photon. Nanostruct. 20 41
[22] Song G Z, Munro E and Nie W 2018 Phys. Rev. A 98 023814
[23] Song G Z, Zhang M and Ai Q 2017 Ann. Phys. 378 33
[24] Yang D, Wang C and Ji Y 2016 Opt. Express 24 16267
[25] Costa R, Melloni A and Martinelli M 2003 IEEE Photon. Technol. Lett. 15 401
[26] Mahmoud M Y, Bassou G and Taalbi A 2012 Opt. Commun. 285 368
[27] Rezaee S, Zavvari M and Alipour-Banaei H 2015 Optik 126 2535
[28] Wang T J, Song S Y and Long G L 2012 Phys. Rev. A 85 062311
[29] Ren B C and Long G L 2014 Opt. Express 22 6547
[30] Xu X S, Zhang H and Kong X Y 2020 Photon. Res. 8 490
[31] Münzberg J, Vetter A and Beutel F 2018 Optica 5 658
[32] Vetter A, Ferrari S and Rath P 2016 Nano Lett. 16 7085
[33] Zhang W J, Li H and You L X 2016 IEEE Photon. J. 8 1
[34] Zhang L, Gu M and Jia T 2014 IEEE Photon. J. 6 1
[35] Yang C, Liu H and Liu Y 2022 Nature 601 205
[36] Yang C, Liu Y and Wang Y 2019 Science 366 1505
[37] Pedarnig J D, Bodea M A and Steiger B 2012 Phys. Procedia 36 508
[38] Aly A H, Ghany S E S A and Kamal B M 2020 Ceram. Int. 46 365
[39] Thapa K B, Srivastava S and Tiwari S 2010 J. Supercond. Nov. Magn. 23 517
[40] Berman O L, Lozovik Y E and Eiderman S L 2006 Phys. Rev. B 74 092505
[41] Qiu D, Gong C and Wang S S 2021 Adv. Mater. 33 2006124
[42] Ooi C H R, Yeung T C A and Kam C H 2000 Phys. Rev. B 61 5920
[43] Aly A H and Mohamed D 2015 J. Supercond. Nov. Magn. 28 1699
[44] Lin W H, Wu C J and Yang T J 2010 Opt. Express 18 27155
[45] Kumar A R, Zhang Z M and Boychev V A 1999 J. Heat Transfer 121 844
[46] Rifat A A, Mahdiraji G A and Chow D M 2015 Sensors 15 11499
[47] Fietz C, Urzhumov Y and Shvets G 2011 Opt. Express 19 19027
[48] Hiett B P, Generowicz J M and Cox S J 2002 IEE Proc. Sci. Meas. Technol. 149 293
[49] Boffi D, Conforti M and Gastaldi L 2006 Numer. Math. 105 249
[50] Yang D, Gao F and Cao Q T 2018 Photon. Res. 6 99
[51] Qi Y P, Wang L Y and Zhang Y 2020 Chin. Phys. B 29 067303
[52] Meng J, Hou L T and Zhou G Y 2008 Chin. Phys. B 17 3779
[53] Hao K S, Huang S L and Zhao W 2011 Chin. Phys. B 20 068104
[54] El-Naggar S A, Elsayed H A and Aly A H 2014 J. Supercond. Nov. Magn. 27 1615
[55] Aly A H 2009 Chem. Phys. 115 391
[56] Axmann W and Kuchment P 1999 J. Comput. Phys. 150 468
[57] Aly A H, Elsayed H A and El-Naggar S A 2014 J. Mod. Opt. 61 1064
[58] Villeneuve P R and Piche M 1994 Quantum Electron. 18 153
[59] Diaz-Valencia B F and Calero J M 2017 J. Low Temp. Phys. 186 275
[60] Zamani M 2016 Phys. C 520 42
[61] Van Duzer T and Turner C W 1981 Phys. Today 35 80
[62] Degirmenci E and Landais P 2013 Appl. Opt. 52 7367
[63] Zhao Y and Grischkowsky D R 2007 IEEE Trans. Microw. Theor. Tech. 55 656
[64] Hu C, Zhang H and Liu G 2019 Appl. Opt. 58 2890
[65] Chang T W, Huang C H and Hou D J 2017 IEEE Photon. J. 9 1
[66] Song G Z, Kwek L C and Deng F G 2019 Phys. Rev. A 99 043830
[67] Baraket Z, Zaghdoudi J and Kanzari M 2017 Opt. Mater. 64 147
[68] Wu J and Gao J 2015 Optik 126 5368
[69] Elsayed H A, El-Naggar S A and Aly A H 2014 J. Mod. Opt. 61 385
[70] Fathollahi Khalkhali T and Bananej A 2017 J. Mod. Opt. 64 830
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
Yi-Han Wang(王奕涵) and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044207.
[3] Spontaneous emission from Λ-type three-level atom driven by bichromatic field in anisotropic double-band photonic crystals
Kai Ling(凌凯), Li Jiang(姜丽), Ren-Gang Wan(万仁刚), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2023, 32(4): 044211.
[4] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[5] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[6] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[7] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[8] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[9] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[10] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[11] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[12] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[13] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[14] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[15] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
No Suggested Reading articles found!