|
|
Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains |
Chang-Tong Liang(梁畅通)1,2,3, Jing-Jing Zhang(张晶晶)1,2, and Peng-Cheng Li(李鹏程)1,2,† |
1 Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China; 2 Key Laboratory of Intelligent Manufacturing Technology of the Ministry of Education, Shantou University, Shantou 515063, China; 3 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China |
|
|
Abstract Frequency-comb emission via high-order harmonic generation (HHG) provides an alternative method for the coherent vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) radiation at ultrahigh repetition rates. In particular, the temporal and spectral features of the HHG were shown to carry profound insight into frequency-comb emission dynamics. Here we present an ab initio investigation of the temporal and spectral coherence of the frequency comb emitted in HHG of He atom driven by few-cycle pulse trains. We find that the emission of frequency combs features a destructive and constructive coherences caused by the phase interference of HHG, leading to suppression and enhancement of frequency-comb emission. The results reveal intriguing and substantially different nonlinear optical response behaviors for frequency-comb emission via HHG. The dynamical origin of frequency-comb emission is clarified by analyzing the phase coherence in HHG processes in detail. Our results provide fresh insight into the experimental realization of selective enhancement of frequency comb in the VUV-XUV regimes.
|
Received: 30 September 2022
Revised: 24 November 2022
Accepted manuscript online: 16 December 2022
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074239 and 91850209), the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2020A1515010927 and 2020ST084), the Fund from the Department of Education of Guangdong Province, China (Grant Nos. 2019KTSCX038 and 2020KCXTD012), and the Fund from Shantou University (Grant No. NTF18030). |
Corresponding Authors:
Peng-Cheng Li
E-mail: pchli@stu.edu.cn
|
Cite this article:
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程) Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains 2023 Chin. Phys. B 32 033201
|
[1] Picqué N and Hänsch T W 2019 Nat. Photon. 13 146 [2] Foltynowicz A, Ban T, Masłowski P, Adler F and Ye J 2011 Phys. Rev. Lett. 107 233002 [3] Bergevin J, Wu T H, Yeak J, Brumfield B E, Harilal S S, Phillips M C and Jones R J 2018 Nat. Commun. 9 1273 [4] Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L and Cundiff S T 2000 Science 288 635 [5] Reichert J, Holzwarth R, Udem Th and Hänsch T W 1999 Opt. Commun. 172 59 [6] Diddams S A, Vahala K and Udem Th 2020 Science 369 6501 [7] Diddams S A, Jones D J, Ye J, Cundiff S T and Hall J L 2000 Phys. Rev. Lett. 84 5102 [8] Dai S Y, Li K Q, Zhai Y Y, Xia W, Wang Q, Xiong W, Qi X H and Chen X Z 2017 Chin. Phys. Lett. 34 013201 [9] Dreissen L S, Roth C, Gründeman E L, Krauth J J, Favier M and Eikema K S E 2019 Phys. Rev. Lett. 123 143001 [10] Coddington I, Newbury N and Swann W 2016 Optica 3 414 [11] Hernández-García C, Pérez-Hernández J A, Popmintchev T, Murnane M M, Kapteyn H C, Jaron-Becker A, Becker A and Plaja L 2013 Phys. Rev. Lett. 111 033002 [12] Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schöffler M, Muller H G, Dörner R and Keller U 2008 Nat. Phys. 4 565 [13] Oskay W H, Diddams S A, Donley E A, Fortier T M, Heavner T P, Hollberg L, Itano W M, Jefferts S R, Delaney M J, Kim K, Levi F, Parker T E and Bergquist J C 2006 Phys. Rev. Lett. 97 020801 [14] Altmann R K, Galtier S, Dreissen L S and Eikema K S E 2016 Phys. Rev. Lett. 117 173201 [15] Matveev A, Parthey C G, Predehl K, Alnis J, Beyer A, Holzwarth R, Udem Th, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, Grosche G, Terra O, Legero Th, Schnatz H, Weyers S, Altschul B and Hänsch T W 2013 Phys. Rev. Lett. 110 230801 [16] Hölsch N, Beyer M, Salumbides E J, Eikema K S E, Ubachs W, Jungen C and Merkt F 2019 Phys. Rev. Lett. 122 103002 [17] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163 [18] Chini M, Zhao K and Chang Z H 2014 Nat. Photon. 8 178 [19] Carrera J J, Son S K and Chu S I 2008 Phys. Rev. A 77 031401R [20] Tudorovskaya M and Lein M 2017 Phys. Rev. A 95 043418 [21] Li P C, Sheu Y L, Laughlin C and Chu S I 2015 Nat. Commun. 6 7178 [22] Carrera J J and Chu S I 2009 Phys. Rev. A 79, 063410 [23] Zhao D, Li F L and Chu S I 2013 Phys. Rev. A 87 043407 [24] Son S K and Chu S I 2008 Phys. Rev. A 77 063406 [25] Cingoz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I and Ye J 2008 Nature 482 68 [26] Lee J, Carlson D R and Jones R J 2008 Opt. Express 19 23315 [27] Kanda N, Imahoko T, Yoshida K, Tanabashi A, Eilanlou A A, Nabekawa Y, Sumiyoshi T, Kuwata-Gonokami M and Midorikawa K 2020 Light Sci. Appl. 9 168 [28] Ozawa A, Davila-Rodriguez J, Bounds J R, Schuessler H A, Hansch T W and Udem Th 2017 Nat. Commun. 8 44 [29] Chini M, Wang X W, Cheng Y, Wang H, Wu Y, Cunningham E, Li P C, Heslar J, Telnov D A, Chu S I and Chang Z H 2014 Nat. Photon. 8 437 [30] Rohwer T, Hellmann S, Wiesenmayer M, Sohrt C, Stange A, Slomski B, Carr A, Liu Y W, Avila L M, Kalläne M, Mathias S, Kipp L, Rossnagel K and Bauer M 2011 Nature 471 490 [31] Tong X M and Chu S I 2014 Phys. Rev. A 89 023431 [32] Li P C and Chu S I 2020 Chin. Phys. B 29 083202 [33] Li P C, Sheu Y L, Laughlin C and Chu S I 2014 Phys. Rev. A 90 041401R [34] Liang C T, Wu Y Y, Wang Z B and Li P C 2022 Opt. Express 30 2413 [35] Li P C and Chu S I 2013 Phys. Rev. A 88 053415 [36] Corkum P B 1993 Phys. Rev. Lett. 71 1994 [37] Tong X M and Chu S I 2000 Phys. Rev. A 61 021802(R) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|