Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 023101    DOI: 10.1088/1674-1056/ac786a
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study

Zilin Wang(王梓霖)1,2, Liang Yang(杨亮)1,2,†, Changsheng Liu(刘长生)1,2, and Shiwei Lin(林仕伟)1,2,‡
1 State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China;
2 School of Materials Science and Engineering, Hainan University, Haikou 570228, China
Abstract  Natural gas hydrate is estimated to have huge reserves. Its exploitation can solve the global oil and gas shortage problem. Hydrates decompose into water and methane, and methane molecules are supersaturated to form nanobubbles. Methane nanobubbles can affect the decomposition efficiency of hydrates. They can provide abundant methane sources for the re-nucleation of hydrates. Molecular dynamics is employed in this study to investigate the decomposition process of type I methane hydrate and the formation of methane nanobubbles generated during decomposition under different methane mole fraction, pressures, and temperatures. The results indicate that external pressure inhibits the diffusion of methane molecules, thereby preventing the formation of nanobubbles. A higher mole fraction of methane molecules in the system requires a higher external pressure to generate stable nanobubbles after the decomposition of the hydrate structure. At 330 K, it is easy to form a nanobubble structure. Results of this study can help provide ideas for the study of efficient extraction and secondary nucleation of hydrates.
Keywords:  molecular dynamics      methane hydrate      nanobubbles      stability  
Received:  07 April 2022      Revised:  14 June 2022      Accepted manuscript online:  14 June 2022
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  91.50.Hc (Gas and hydrate systems)  
  47.55.dd (Bubble dynamics)  
  36.40.Qv (Stability and fragmentation of clusters)  
Fund: Project supported by the specific research fund of the Innovation Platform for Academicians of Hainan Province of China and the Hainan Provincial Natural Science Foundation of China (Grant No. 519MS025).
Corresponding Authors:  Liang Yang, Shiwei Lin     E-mail:  yl5923@hainanu.edu.cn;linsw@hainanu.edu.cn

Cite this article: 

Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟) Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study 2023 Chin. Phys. B 32 023101

[1] Sloan Jr E D and Koh C A 2007 Clathrate Hydrates of Natural Gases (Boca Raton: CRC Press) pp. 45-50
[2] Makogon Y F 2010 J. Nat. Gas Sci. Eng. 2 49
[3] Boswell R, Rose K, Collett T S, Lee M, Winters W, Lewis K A and Agena W 2011 Mar. Petrol. Geol. 28 589
[4] Chong Z R, Yang S H B, Babu P, Linga P and Li X S 2016 Appl. Energ. 162 1633
[5] Cabrera-Ramírez A, Arismendi-Arrieta D J, Valdés A and Prosmiti R 2020 ChemPhysChem 22 359
[6] Bagherzadeh S A, Englezos P, Alavi S and Ripmeester J A 2012 J. Chem. Thermodyn. 44 13
[7] Forrisdahl O K 1996 Mol. Phys. 89 819
[8] John S T and Klug D D 2002 Supramol. Chem. 2 467
[9] Uddin M and Coombe D 2014 J. Phys. Chem. A 118 1971
[10] Vatamanu J and Kusalik P 2007 J. Chem. Phys. 126 124703
[11] Uchida T, Yamazaki K and Gohara K 2016 Korean J. Chem. Eng. 33 1749
[12] Katsuki D, Ohmura R, Ebinuma T and Narita H 2008 J. Appl. Phys. 104 083514
[13] Hawtin R W, Quigley D and Rodger P M 2008 Phys. Chem. Chem. Phys. 10 4853
[14] Jacobson L C, Hujo W and Molinero V 2010 J. Am. Chem. Soc. 132 11806
[15] Jacobson L C and Molinero V 2011 J. Am. Chem. Soc. 133 6458
[16] Liang S and Kusalik P G 2011 Chem. Sci. 2 1286
[17] Moon C, Taylor P C and Rodger P M 2003 J. Am. Chem. Soc. 125 4706
[18] Vatamanu J and Kusalik P G 2010 Phys. Chem. Chem. Phys. 12 15065
[19] Walsh M R, Beckham G T, Koh C A, Sloan E D, Wu D T and Sum A K 2011 J. Phys. Chem. C 115 21241
[20] Walsh M R, Hancock S H, Wilson S J, Patil S L, Moridis G J, Boswell R, Collett T S, Koh C A and Sloan E D 2009 Energ. Econ. 31 815
[21] Kim H, Bishnoi P R, Heidemann R A and Rizvi S S 1987 Chem. Eng. Sci. 42 1645
[22] Ripmeester J A, Alireza S, Hosseini B, Englezos P and Alavi S 2010 Canadian Unconventional Resources and International Petroleum Conference, October 19-21, 2010, Alberta, Canada, p. 138112
[23] Fang B, Ning F, Ou W, Wang D, Zhang Z, Yu Y, Lu H, Wu J and Vlugt T J 2019 Fuel 258 116106
[24] Gao F, Gupta K M, Yuan S and Jiang J 2018 Mol. Simulat. 44 1220
[25] Ji H, Chen D, Zhao C and Wu G 2018 J. Phys. Chem. C 122 1318
[26] Yagasaki T, Matsumoto M, Andoh Y, Okazaki S and Tanaka H 2014 J. Phys. Chem. B 118 1900
[27] Chen C, Hu W, Yang L, Zhao J and Song Y 2021 J. Mol. Liq. 323 114614
[28] McMullan R K and Jeffrey G 1965 J. Chem. Phys. 42 2725
[29] Jorgensen W L and Tirado-Rives J 1988 J. Am. Chem. Soc. 110 1657
[30] Berendsen H J, Postma J v, van Gunsteren W F, DiNola A and Haak J R 1984 J. Chem. Phys. 81 3684
[31] Plimpton S 1995 J. Comput. Phys. 117 1
[32] Ryckaert J P, Ciccotti G and Berendsen H J 1977 J. Comput. Phys. 23 327
[35] Fukunaga K and Hostetler L 1975 IEEE Trans. Inform. Theory 21 32
[33] Bagherzadeh S A, Alavi S, Ripmeester J and Englezos P 2015 J. Chem. Phys. 142 214701
[34] Walsh M R, Koh C A, Sloan E D, Sum A K and Wu D T 2009 Science 326 1095
[36] Sloan E D 2003 Nature 426 353
[37] Weijs J H, Seddon J R T and Lohse D 2012 ChemPhysChem 13 2197
[1] A stochastic two-dimensional intelligent driver car-following model with vehicular dynamics
Hong-Sheng Qi(祁宏生) and Yu-Yan Ying(应雨燕). Chin. Phys. B, 2023, 32(4): 044501.
[2] Study of metal—ceramic WC/Cu nano-wear behavior and strengthening mechanism
Min Zheng(郑敏), Jie Chen(陈杰), Zong-Xiao Zhu(朱宗孝), Ding-Feng Qu(曲定峰), Wei-Hua Chen(陈卫华), Zhuo Wu(吴卓), Lin-Jun Wang(王林军), and Xue-Zhong Ma(马学忠). Chin. Phys. B, 2023, 32(4): 046801.
[3] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[4] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[5] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[6] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[7] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[8] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[9] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[10] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[11] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[12] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[13] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[14] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[15] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
No Suggested Reading articles found!