Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 010504    DOI: 10.1088/1674-1056/ac9363
GENERAL Prev   Next  

Influence of coupling asymmetry on signal amplification in a three-node motif

Xiaoming Liang(梁晓明)1,†, Chao Fang(方超)1, Xiyun Zhang(张希昀)2, and Huaping Lü(吕华平)1
1 School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China;
2 Department of Physics, Jinan University, Guangzhou 510632, China
Abstract  The three-node feedforward motif has been revealed to function as a weak signal amplifier. In this motif, two nodes (input nodes) receive a weak input signal and send it unidirectionally to the third node (output node). Here, we change the motif's unidirectional couplings (feedforward) to bidirectional couplings (feedforward and feedback working together). We find that a small asymmetric coupling, in which the feedforward effect is stronger than the feedback effect, may enable the three-node motif to go through two distinct dynamic transitions, giving rise to a double resonant signal response. We present an analytical description of the double resonance, which agrees with the numerical findings.
Keywords:  network motif      synchronization      coupling asymmetry      signal amplification  
Received:  05 July 2022      Revised:  02 September 2022      Accepted manuscript online:  21 September 2022
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  87.19.ln (Oscillations and resonance)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175087 and 12105117).
Corresponding Authors:  Xiaoming Liang     E-mail:  xmliang@jsnu.edu.cn

Cite this article: 

Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平) Influence of coupling asymmetry on signal amplification in a three-node motif 2023 Chin. Phys. B 32 010504

[1] Samardak A, Nogaret A, Janson N B, Balanov A G, Farrer I and Ritchie D A 2009 Phys. Rev. Lett. 102 226802
[2] Zhou J, Zhou Y and Liu Z 2011 Phys. Rev. E 83 046107
[3] Jiang L, Lai L, Yu T and Luo M 2021 Chin. Phys. B 30 060502
[4] Lillicrap T P, Santoro A, Marris L, Akerman C J and Hinton G 2020 Nat. Rev. Neurosci. 21 335
[5] Yao Y 2021 Chin. Phys. B 30 060503
[6] Gammaitoni L, Hänggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 223
[7] Badzey R L and Mohanty P 2005 Nature 437 995
[8] Kanki T, Hotta Y, Asakawa N, Kawai T and Tanaka H 2010 Appl. Phys. Lett. 96 242108
[9] Karabalin R B, Lifshitz R, Cross M C, Matheny M H, Masmanidis S C and Roukes M L 2011 Phys. Rev. Lett. 106 094102
[10] Peters K J H, Geng Z, Malmir K, Smith J M and Rodriguez S R K 2021 Phys. Rev. Lett. 126 213901
[11] Zhang Y, Hu G and Gammaitoni L 1998 Phys. Rev. E 58 2952
[12] Lü H and Hu G 2004 Phys. Rev. E 69 036212
[13] Li Q and Lang X 2006 Phys. Rev. E 74 031905
[14] Rousseau D, Duan F and Chapeau-Blondeau 2003 Phys. Rev. E 68 031107
[15] Lindner J F, Chandramouli S, Bulsara A R, Löcher M and Ditto W L 1998 Phys. Rev. Lett. 81 5048
[16] Barabási A L and Albert R 1999 Science 286 509
[17] Strogatz S H 2001 Nature 410 268
[18] Bullmore E and Sporns O 2009 Nat. Rev. Neurosci. 10 186
[19] Wang Q, Perc M, Duan Z and Chen G 2009 Phys. Rev. E 80 026206
[20] Zhang J, Hang S, Pang S, Wang M and Gao S 2015 Chin. Phys. Lett. 32 120502
[21] Zhang X, Boccaletti S, Guan S and Liu Z 2015 Phys. Rev. Lett. 114 038701
[22] Boccaletti S, Almendral J A, Guan S, Leyva I, Liu Z, Sendiña-Nadal I, Wang Z and Zou Y 2016 Phys. Rep. 660 1
[23] Pan T, Huang X, Xu C and Lü H 2019 Chin. Phys. B 28 120503
[24] Acebrón J A, Lozano S and Arenas A 2007 Phys. Rev. Lett. 99 128701
[25] Kondo T, Liu Z and Munakata T 2010 Phys. Rev. E 81 041115
[26] Chacón R and Martínez P J 2015 Phys. Rev. E 92 012821
[27] Shen Q and Liu Z 2021 Phys. Rev. E 103 052414
[28] Gao Z, Hu B and Hu G 2001 Phys. Rev. E 65 016209
[29] Perc M 2007 Phys. Rev. E 76 066203
[30] Perc M 2008 Phys. Rev. E 78 036105
[31] Liu Z and Munakata T 2008 Phys. Rev. E 78 046111
[32] Alon U 2007 Nat. Rev. Genet. 8 450
[33] Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D and Alon U 2002 Science 298 824
[34] McCullen N J, Mullin T and Golubitsky M 2007 Phys. Rev. Lett. 98 254101
[35] Ushakov Y V, Dubkov A A and Spagnolo B 2011 Phys. Rev. Lett. 107 108103
[36] Guo D and Li C 2009 Phys. Rev. E 79 051921
[37] Liang X, Yanchuk S and Zhao L 2013 Phys. Rev. E 88 012910
[38] Liang X, Tang M and Lü H 2013 Chaos 23 043113
[39] Ding W, Gu C and Liang X 2016 Commun. Theor. Phys. 65 189
[40] Bragard J, Boccaletti S and Mancini H 2003 Phys. Rev. Lett. 91 064103
[41] Moss F, Pierson D and O'Gorman D 1994 Int. J. Bifurcation Chaos Appl. Sci. Eng. 4 1383
[42] Pikovsky A, Zaikin A and de la Casa M A 2002 Phys. Rev. Lett. 88 050601
[43] Tessone C J, Mirasso C R, Toral R and Gunton J D 2006 Phys. Rev. Lett. 97 194101
[44] Wang Z and Liu Z 2021 Chaos 31 063126
[45] Lu F and Liu Z 2009 Chin. Phys. Lett. 26 040503
[46] Liang X and Zhang X 2021 Phys. Rev. E 104 034204
[47] Liang X, Liu C and Zhang X 2020 Phys. Rev. E 101 022205
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[4] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[7] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[8] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[9] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[10] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[11] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[12] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[13] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[14] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[15] Dynamic modeling and aperiodically intermittent strategy for adaptive finite-time synchronization control of the multi-weighted complex transportation networks with multiple delays
Ning Li(李宁), Haiyi Sun(孙海义), Xin Jing(靖新), and Zhongtang Chen(陈仲堂). Chin. Phys. B, 2021, 30(9): 090507.
No Suggested Reading articles found!