|
|
Influence of coupling asymmetry on signal amplification in a three-node motif |
Xiaoming Liang(梁晓明)1,†, Chao Fang(方超)1, Xiyun Zhang(张希昀)2, and Huaping Lü(吕华平)1 |
1 School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; 2 Department of Physics, Jinan University, Guangzhou 510632, China |
|
|
Abstract The three-node feedforward motif has been revealed to function as a weak signal amplifier. In this motif, two nodes (input nodes) receive a weak input signal and send it unidirectionally to the third node (output node). Here, we change the motif's unidirectional couplings (feedforward) to bidirectional couplings (feedforward and feedback working together). We find that a small asymmetric coupling, in which the feedforward effect is stronger than the feedback effect, may enable the three-node motif to go through two distinct dynamic transitions, giving rise to a double resonant signal response. We present an analytical description of the double resonance, which agrees with the numerical findings.
|
Received: 05 July 2022
Revised: 02 September 2022
Accepted manuscript online: 21 September 2022
|
PACS:
|
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
87.19.ln
|
(Oscillations and resonance)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175087 and 12105117). |
Corresponding Authors:
Xiaoming Liang
E-mail: xmliang@jsnu.edu.cn
|
Cite this article:
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平) Influence of coupling asymmetry on signal amplification in a three-node motif 2023 Chin. Phys. B 32 010504
|
[1] Samardak A, Nogaret A, Janson N B, Balanov A G, Farrer I and Ritchie D A 2009 Phys. Rev. Lett. 102 226802 [2] Zhou J, Zhou Y and Liu Z 2011 Phys. Rev. E 83 046107 [3] Jiang L, Lai L, Yu T and Luo M 2021 Chin. Phys. B 30 060502 [4] Lillicrap T P, Santoro A, Marris L, Akerman C J and Hinton G 2020 Nat. Rev. Neurosci. 21 335 [5] Yao Y 2021 Chin. Phys. B 30 060503 [6] Gammaitoni L, Hänggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 223 [7] Badzey R L and Mohanty P 2005 Nature 437 995 [8] Kanki T, Hotta Y, Asakawa N, Kawai T and Tanaka H 2010 Appl. Phys. Lett. 96 242108 [9] Karabalin R B, Lifshitz R, Cross M C, Matheny M H, Masmanidis S C and Roukes M L 2011 Phys. Rev. Lett. 106 094102 [10] Peters K J H, Geng Z, Malmir K, Smith J M and Rodriguez S R K 2021 Phys. Rev. Lett. 126 213901 [11] Zhang Y, Hu G and Gammaitoni L 1998 Phys. Rev. E 58 2952 [12] Lü H and Hu G 2004 Phys. Rev. E 69 036212 [13] Li Q and Lang X 2006 Phys. Rev. E 74 031905 [14] Rousseau D, Duan F and Chapeau-Blondeau 2003 Phys. Rev. E 68 031107 [15] Lindner J F, Chandramouli S, Bulsara A R, Löcher M and Ditto W L 1998 Phys. Rev. Lett. 81 5048 [16] Barabási A L and Albert R 1999 Science 286 509 [17] Strogatz S H 2001 Nature 410 268 [18] Bullmore E and Sporns O 2009 Nat. Rev. Neurosci. 10 186 [19] Wang Q, Perc M, Duan Z and Chen G 2009 Phys. Rev. E 80 026206 [20] Zhang J, Hang S, Pang S, Wang M and Gao S 2015 Chin. Phys. Lett. 32 120502 [21] Zhang X, Boccaletti S, Guan S and Liu Z 2015 Phys. Rev. Lett. 114 038701 [22] Boccaletti S, Almendral J A, Guan S, Leyva I, Liu Z, Sendiña-Nadal I, Wang Z and Zou Y 2016 Phys. Rep. 660 1 [23] Pan T, Huang X, Xu C and Lü H 2019 Chin. Phys. B 28 120503 [24] Acebrón J A, Lozano S and Arenas A 2007 Phys. Rev. Lett. 99 128701 [25] Kondo T, Liu Z and Munakata T 2010 Phys. Rev. E 81 041115 [26] Chacón R and Martínez P J 2015 Phys. Rev. E 92 012821 [27] Shen Q and Liu Z 2021 Phys. Rev. E 103 052414 [28] Gao Z, Hu B and Hu G 2001 Phys. Rev. E 65 016209 [29] Perc M 2007 Phys. Rev. E 76 066203 [30] Perc M 2008 Phys. Rev. E 78 036105 [31] Liu Z and Munakata T 2008 Phys. Rev. E 78 046111 [32] Alon U 2007 Nat. Rev. Genet. 8 450 [33] Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D and Alon U 2002 Science 298 824 [34] McCullen N J, Mullin T and Golubitsky M 2007 Phys. Rev. Lett. 98 254101 [35] Ushakov Y V, Dubkov A A and Spagnolo B 2011 Phys. Rev. Lett. 107 108103 [36] Guo D and Li C 2009 Phys. Rev. E 79 051921 [37] Liang X, Yanchuk S and Zhao L 2013 Phys. Rev. E 88 012910 [38] Liang X, Tang M and Lü H 2013 Chaos 23 043113 [39] Ding W, Gu C and Liang X 2016 Commun. Theor. Phys. 65 189 [40] Bragard J, Boccaletti S and Mancini H 2003 Phys. Rev. Lett. 91 064103 [41] Moss F, Pierson D and O'Gorman D 1994 Int. J. Bifurcation Chaos Appl. Sci. Eng. 4 1383 [42] Pikovsky A, Zaikin A and de la Casa M A 2002 Phys. Rev. Lett. 88 050601 [43] Tessone C J, Mirasso C R, Toral R and Gunton J D 2006 Phys. Rev. Lett. 97 194101 [44] Wang Z and Liu Z 2021 Chaos 31 063126 [45] Lu F and Liu Z 2009 Chin. Phys. Lett. 26 040503 [46] Liang X and Zhang X 2021 Phys. Rev. E 104 034204 [47] Liang X, Liu C and Zhang X 2020 Phys. Rev. E 101 022205 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|