|
|
Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse |
Zhi-Jun Li(李志军)1,†, Wen-Qiang Xie(谢文强)1, Jin-Fang Zeng(曾金芳)2, and Yi-Cheng Zeng(曾以成)2 |
1 School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China; 2 School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China |
|
|
Abstract Considering the fact that memristors have the characteristics similar to biological synapses, a fractional-order multistable memristor is proposed in this paper. It is verified that the fractional-order memristor has multiple local active regions and multiple stable hysteresis loops, and the influence of fractional-order on its nonvolatility is also revealed. Then by considering the fractional-order memristor as an autapse of Hindmarsh-Rose (HR) neuron model, a fractional-order memristive neuron model is developed. The effects of the initial value, external excitation current, coupling strength and fractional-order on the firing behavior are discussed by time series, phase diagram, Lyapunov exponent and inter spike interval (ISI) bifurcation diagram. Three coexisting firing patterns, including irregular asymptotically periodic (A-periodic) bursting, A-periodic bursting and chaotic bursting, dependent on the memristor initial values, are observed. It is also revealed that the fractional-order can not only induce the transition of firing patterns, but also change the firing frequency of the neuron. Finally, a neuron circuit with variable fractional-order is designed to verify the numerical simulations.
|
Received: 04 March 2022
Revised: 28 March 2022
Accepted manuscript online: 11 April 2022
|
PACS:
|
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
87.19.ll
|
(Models of single neurons and networks)
|
|
87.19.lj
|
(Neuronal network dynamics)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018AAA0103300) and the National Natural Science Foundation of China (Grant Nos. 62171401 and 62071411). |
Corresponding Authors:
Zhi-Jun Li
E-mail: lizhijun_320@163.com
|
Cite this article:
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成) Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse 2023 Chin. Phys. B 32 010503
|
[1] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500 [2] Hindmarsh J L and Rose R M 1984 Philos. Trans. R. Soc. Lond B Biol. Sci. 221 87 [3] FitzHugh R 1961 Biophys. J. 1 445 [4] Izhikevich E M 2004 IEEE Trans. Neural Networks 15 1063 [5] Morris C and Lecar H 1981 Biophys. J. 35 193 [6] Han F, Wang Z J and Fan H 2015 Chin. Phys. Lett. 32 040502 [7] Ding L X, Jia B and Li Y Y 2019 Acta Phys. Sin. 68 180502 (in Chinese) [8] Lu Y M, Wang C H and Deng Q L 2022 Chin. Phys. B 31 060502 [9] Qi G and Wang Z 2020 Chin. Phys. B 30 120516 [10] Xu Y, Liu M and Zhu Z 2020 Chin. Phys. B 29 098704 [11] Yin L, Zheng R, Ke W, He Q and Zhang Y 2018 Nat. Comm. 9 4890 [12] Yilmaz E, Ozer M, Baysal V and Perc M 2016 Sci. Rep. 6 30914 [13] Zhao Z and Gu H 2017 Sci. Rep. 7 6760 [14] Strukov D B, Snider G S, Stewart D R, Williams and Stanley R 2008 Nature 453 80 [15] Chua L O 2015 Radioengineering 24 319 [16] Wang C, Xiong L, Sun J and Yao W 2019 Nonlinear Dyn. 95 2893 [17] Mannan Z I, Adhikari S P, Yang C, Budhathoki R K, Kim H and Chua L 2019 IEEE Trans. Neural Netw. Learn. Syst. 30 3458 [18] Wang C, Guo S and Xu Y 2017 Complexity 2017 5436737 [19] Wang H, Ma J and Chen Y 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 3242 [20] Ma J, Song X, Jin W and Wang C 2015 Chaos Solitons Fract. 80 31 [21] Qu L, Du L, Zhang H and Cao Z 2019 Int. J. Bifurcat. Chaos 29 1950202 [22] Yilmaz E, Baysal V, Perc M and Ozer M 2016 Sci. China Technol. Sc. 59 364 [23] Tripathi D, Pandey S K and Das S 2015 Appl. Math. Comput. 215 3645 [24] Hilfer R 2000 Applications of Fractional Calculus in Physics, 2nd edn. (Singapore: World Scientific) pp. 12-15 [25] Monje C A, Chen Y Q, Vinagre B M and Xue D 2010 Fractional-order Systems and Controls, 1st edn. (Springer Science & Business Media) pp. 89-162 [26] Lundstrom B N, Higgs M H, Spain W J and Fairhall A L 2018 Nat. Neurosci. 11 1335 [27] Magin R L 2014 Critical Review in Biomedical Engineering 32 10 [28] Yu Y, Shi M, Kang H, Chen M and Bao B 2020 Nonlinear Dyn. 100 891 [29] Alidousti J and Ghaziani 2017 Mathematical Models and Computer Simulations 9 390 [30] Meng F, Zeng X and Wang Z 2019 Nonlinear Dyn. 95 1615 [31] Meng F, Zeng X and Wang Z 2020 Int. J. Bifurcat. Chaos 30 2050044 [32] Malik S A and Mir A H 2020 IEEE ACM T. Comput. Bi. 11 1545 [33] Leng Y, Yu D, Hu Y, Yu S and Ye Z 2020 Chaos 30 033108 [34] Chua L O 2005 Int. J. Bifurcat. Chaos 15 3435 [35] Chua L O 2014 Semicond. Sci. Tech. 29 104001 [36] Gibson GA, Musunuru S, Zhang J, Vandenberghe K, Lee J and Cheng C 2016 Appl. Phys. Lett. 108 023505 [37] Li Z, Guo Z, Wang M and Ma M 2021 AEU-Int. J. Electron. Commun. 142 153995 [38] Jin P, Wang G, Lu H and Fernando T A 2017 IEEE T. Circuits Sys. II 65 246 [39] Xu B, Wang G, Lu H, Yu S and Yuan F 2019 Nonlinear Dyn. 96 765 [40] Yuan F, Wang G and Wang X 2016 Chaos 26 073107 [41] Zhu M, Wang C, Deng Q and Hong Q 2020 Int. J. Bifurcat. Chaos 30 2050184 [42] Li Z, Zhou H, Wang M and Ma M 2021 Nonlinear Dyn. 104 1455 [43] Lin H, Wang C, Sun Y and Wei Y 2020 Nonlinear Dyn. 100 3667 [44] Li Z and Zhou H 2021 Electron. Lett. 57 715 [45] Xie W, Wang C and Lin H 2021 Nonlinear Dyn. 104 4523 [46] Yang N, Xu C, Wu C, Jia R and Liu C 2019 Nonlinear Dyn. 97 33 [47] Chang H, Wang Z, Li Y and Chen G 2018 Int. J. Bifurcat. Chaos 28 1850105 [48] Matignon D 2016 Computational Engineering in Systems Applications 2 963 [49] Adomian G 1998 J. Math. Anal. Appl. 135 501 [50] Tavazoei M S and Haeri M 2009 Automatica 45 1886 [51] Kaslik E and Sivasundaram S 2012 Nonlinear Anal. 13 1489 [52] Danca M F, Fečkan M, Kuznetsov N V and Chen G 2018 Nonlinear Dyn. 91 2523 [53] Danca M F, Fečkan M and Chen G 2017 Nonlinear Dyn. 89 1889 [54] Kang Y M, Xie Y, Lu J C and Jiang J 2015 Nonlinear Dyn. 82 1259 [55] Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171 [56] Danca M F and Kuznetsov N 2018 Int. J. Bifurcat. Chaos 28 1850067 [57] Bandy D K, Burton E K, Hall J R, Chapman D M and Elrod J T 2021 Chaos 31 013120 [58] Hall J R, Burton E K, Chapman D M and Bandy D K 2021 Applied Sciences 11 9905 [59] Chen X, Liu C and Wang F 2008 Chin. Phys. B 17 1664 [60] Shao S, Min F and Ma M 2013 J. Phys. 62 130504 (in Chinese) [61] Zhou C, Li Z and Xie F 2019 Eur. Phys. J. Plus 134 73 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|