Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 018506    DOI: 10.1088/1674-1056/ac9fc4
RAPID COMMUNICATION Prev   Next  

Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices

Guangbao Lu(陆广宝)1,2,†, Jun Liu(刘俊)1,2,†, Chuanguo Zhang(张传国)1, Yang Gao(高扬)1,2, and Yonggang Li(李永钢)1,2,‡
1 Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China
Abstract  The total ionizing dose (TID) effect is a key cause for the degradation/failure of semiconductor device performance under energetic-particle irradiation. We developed a dynamic model of mobile particles and defects by solving the rate equations and Poisson's equation simultaneously, to understand threshold voltage shifts induced by TID in silicon-based metal-oxide-semiconductor (MOS) devices. The calculated charged defect distribution and corresponding electric field under different TIDs are consistent with experiments. TID changes the electric field at the Si/SiO2 interface by inducing the accumulation of oxide charged defects nearby, thus shifting the threshold voltage accordingly. With increasing TID, the oxide charged defects increase to saturation, and the electric field increases following the universal 2/3 power law. Through analyzing the influence of TID on the interfacial electric field by different factors, we recommend that the radiation-hardened performance of devices can be improved by choosing a thin oxide layer with high permittivity and under high gate voltages.
Keywords:  dynamic modeling      total ionizing dose      threshold voltage shifts      radiation-hardening  
Received:  26 August 2022      Revised:  31 October 2022      Accepted manuscript online:  03 November 2022
PACS:  85.30.-z (Semiconductor devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  24.10.-i (Nuclear reaction models and methods)  
  42.88.+h (Environmental and radiation effects on optical elements, devices, and systems)  
Fund: Project supported by the Science Challenge Project of China (Grant No. TZ2018004), the National Natural Science Foundation of China (Grant Nos. 11975018 and 11775254), the National MCF Energy R&D Program of China (Grant No. 2018YEF0308100), and the outstanding member of Youth Innovation Promotion Association CAS (Grant No. Y202087).
Corresponding Authors:  Yonggang Li     E-mail:  ygli@theory.issp.ac.cn

Cite this article: 

Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢) Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices 2023 Chin. Phys. B 32 018506

[1] Benton E R and Benton E V 2001 Nucl. Instr. Meth. B 184 255
[2] Sajid M, Chechenin N G, Sill Torres F, Nabeel Hanif M, Gulzari U A, Arslan S and Khan E U 2018 Nucl. Instr. Meth. B 428 30
[3] Foster C C 2003 MRS Bull. 28 136
[4] Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Paillet P and Ferlet-Cavrois V 2008 IEEE Trans. Nucl. Sci. 55 1833
[5] Dodd P E 2005 IEEE Trans. Device Mater. Rel. 5 343
[6] Adell P C and Scheick L Z 2013 IEEE Trans. Nucl. Sci. 60 1929
[7] Hughes H L and Benedetto J M 2003 IEEE Trans. Nucl. Sci. 50 500
[8] Choi Y, Ha D, King T and Hu C 2001 IEEE DRC 85-86
[9] Chen Y, Xu D, Xu K, Zhang N, Liu S, Zhao J, Luo Q, Snyman L W and Swart J W 2019 Chin. Phys. B 28 107801
[10] Oldham T R and McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483
[11] Ma T C and Dressendorfer P V 1989 Ionizing Radiation Effects in MOS Devices and Circuits (New York: Wiley)
[12] Hughes H L and Giroux R R 1964 Electronics 37 58
[13] Hughes H L 1965 IEEE Trans. Nucl. Sci. 12 53
[14] Kooi E 1965 Philips Res. Rept. 20 306
[15] Zaininger K H 1966 Appl. Phys. Lett. 8 140
[16] Szedon J R and Sandor J E 1965 Appl. Phys. Lett. 6 181
[17] Barnaby H J, McLain M L, Esqueda I S and Xiao Jie C 2009 IEEE Trans. Circuits Syst. I, Reg. Papers 56 1870
[18] Xu J, Ma Z, Li H, Song Y, Zhang L and Lu B 2018 IEEE Trans. Semiconduct. Manufact. 31 183
[19] Song Y, Zhang G, Cai X, Dou B, Wang Z, Liu Y, Zhou H, Zhong L, Dai G, Zuo X and Wei S H 2022 Small 18 e2107516
[20] Chen X J, Barnaby H J, Vermeire B, Holbert K, Wright D, Pease R L, Dunham G, Platteter D G, Seiler J, McClure S and Adell P 2007 IEEE Trans. Nucl. Sci. 54 1913
[21] Chatzikyriakou E, Potter K, Redman-White W and De Groot C H 2017 Nucl. Instr. Meth. B 393 39
[22] Pease R L, Adell P C, Rax B G, Chen X J, Barnaby H J, Holbert K E and Hjalmarson H P 2008 IEEE Trans. Nucl. Sci. 55 3169
[23] Pershenkov V, Bakerenkov A, Rodin A, Felitsyn V, Zhukov A, Telets V and Belyakov V 2020 Facta universitatis-series: Electronics and Energetics 33 303
[24] Srour J R and Mcgarrity J M 1988 Proc. IEEE 76 1443
[25] Esqueda I S, Barnaby H J, Adell P C, Rax B G, Hjalmarson H P, McLain M L and Pease R L 2011 IEEE Trans. Nucl. Sci. 58 2945
[26] Lu Z Y, Nicklaw C J, Fleetwood D M, Schrimpf R D and Pantelides S T 2002 Phys. Rev. Lett. 89 285505
[27] Rowsey N L, Law M E, Schrimpf R D, Fleetwood D M, Tuttle B R and Pantelides S T 2011 IEEE Trans. Nucl. Sci. 59 51
[28] Blöchl P E 2000 Phys. Rev. B 62 6158
[29] Rowsey N L, Law M E, Schrimpf R D, Fleetwood D M, Tuttle B R and Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2937
[30] Devine R A B, Mathiot D, Warren W L, Fleetwood D M and Aspar B 1993 Appl. Phys. Lett. 63 2926
[31] Rashkeev S N, Fleetwood D M, Schrimpf R D and Pantelides S T 2001 Phys. Rev. Lett. 87 165506
[32] Huang Q and Jiang J 2019 Prog. Nucl. Energy 114 105
[33] Tuttle B R and Pantelides S T 2009 Phys. Rev. B 79 115206
[34] Chen X J, Barnaby H J, Adell P, Pease R L, Vermeire B and Holbert K E 2009 IEEE Trans. Nucl. Sci. 56 3196
[35] Jafari H, Feghhi S A H and Boorboor S 2015 Radiat. Meas. 73 69
[36] Xu K K 2021 J. Micromech. Microeng. 31 054001
[37] Sills R B and Cai W 2014 Model. Simul. Mater. Sci. Eng. 22 025003
[38] Winokur P S and Boesch H E 1980 IEEE Trans. Nucl. Sci. 27 1647
[1] Influences of total ionizing dose on single event effect sensitivity in floating gate cells
Ya-Nan Yin(殷亚楠), Jie Liu(刘杰), Qing-Gang Ji(姬庆刚), Pei-Xiong Zhao(赵培雄), Tian-Qi Liu(刘天奇), Bing Ye(叶兵), Jie Luo(罗捷), You-Mei Sun(孙友梅), Ming-Dong Hou(侯明东). Chin. Phys. B, 2018, 27(8): 086103.
[2] Research on the radiation hardened SOI devices with single-step Si ion implantation
Li-Hua Dai(戴丽华), Da-Wei Bi(毕大炜), Zhi-Yuan Hu(胡志远), Xiao-Nian Liu(刘小年), Meng-Ying Zhang(张梦映), Zheng-Xuan Zhang(张正选), Shi-Chang Zou(邹世昌). Chin. Phys. B, 2018, 27(4): 048503.
[3] Influence of characteristics' measurement sequence on total ionizing dose effect in PDSOI nMOSFET
Xin Xie(解鑫), Da-Wei Bi(毕大伟), Zhi-Yuan Hu(胡志远), Hui-Long Zhu(朱慧龙), Meng-Ying Zhang(张梦映), Zheng-Xuan Zhang(张正选), Shi-Chang Zou(邹世昌). Chin. Phys. B, 2018, 27(12): 128501.
[4] Synergistic effect of total ionizing dose on single event effect induced by pulsed laser microbeam on SiGe heterojunction bipolar transistor
Jin-Xin Zhang(张晋新), Hong-Xia Guo(郭红霞), Xiao-Yu Pan(潘霄宇), Qi Guo(郭旗), Feng-Qi Zhang(张凤祁), Juan Feng(冯娟), Xin Wang(王信), Yin Wei(魏莹), Xian-Xiang Wu(吴宪祥). Chin. Phys. B, 2018, 27(10): 108501.
[5] Direct measurement and analysis of total ionizing dose effect on 130 nm PD SOI SRAM cell static noise margin
Qiwen Zheng(郑齐文), Jiangwei Cui(崔江维), Mengxin Liu(刘梦新), Dandan Su(苏丹丹), Hang Zhou(周航), Teng Ma(马腾), Xuefeng Yu(余学峰), Wu Lu(陆妩), Qi Guo(郭旗), Fazhan Zhao(赵发展). Chin. Phys. B, 2017, 26(9): 096103.
[6] Total ionizing radiation-induced read bit-errors in toggle magnetoresistive random-access memory devices
Yan Cui(崔岩), Ling Yang(杨玲), Teng Gao(高腾), Bo Li(李博), Jia-Jun Luo(罗家俊). Chin. Phys. B, 2017, 26(8): 087501.
[7] Total ionizing dose induced single transistor latchup in 130-nm PDSOI input/output NMOSFETs
Shuang Fan(樊双), Zhi-Yuan Hu(胡志远), Zheng-Xuan Zhang(张正选), Bing-Xu Ning(宁冰旭), Da-Wei Bi(毕大炜), Li-Hua Dai(戴丽华), Meng-Ying Zhang(张梦映), Le-Qing Zhang(张乐情). Chin. Phys. B, 2017, 26(3): 036103.
[8] Comparison of radiation degradation induced by x-rayand 3-MeV protons in 65-nm CMOS transistors
Lili Ding(丁李利), Simone Gerardin, Marta Bagatin, Dario Bisello, Serena Mattiazzo, Alessandro Paccagnella. Chin. Phys. B, 2016, 25(9): 096110.
[9] Utilizing a shallow trench isolation parasitic transistor to characterize the total ionizing dose effect of partially-depleted silicon-on-insulator input/output n-MOSFETs
Peng Chao (彭超), Hu Zhi-Yuan (胡志远), Ning Bing-Xu (宁冰旭), Huang Hui-Xiang (黄辉祥), Fan Shuang (樊双), Zhang Zheng-Xuan (张正选), Bi Da-Wei (毕大炜), En Yun-Fei (恩云飞). Chin. Phys. B, 2014, 23(9): 090702.
[10] Bias dependence of a deep submicron NMOSFET response to total dose irradiation
Liu Zhang-Li(刘张李), Hu Zhi-Yuan(胡志远), Zhang Zheng-Xuan(张正选), Shao Hua(邵华), Chen Ming(陈明), Bi Da-Wei(毕大炜), Ning Bing-Xu(宁冰旭), and Zou Shi-Chang(邹世昌). Chin. Phys. B, 2011, 20(7): 070701.
[11] Total ionizing dose effect in an input/output device for flash memory
Liu Zhang-Li(刘张李), Hu Zhi-Yuan(胡志远), Zhang Zheng-Xuan(张正选), Shao Hua(邵华), Chen Ming(陈明), Bi Da-Wei(毕大炜), Ning Bing-Xu(宁冰旭), and Zou Shi-Chang(邹世昌) . Chin. Phys. B, 2011, 20(12): 120703.
[12] Suppressing the hot carrier injection degradation rate in total ionizing dose effect hardened nMOSFETs
Chen Jian-Jun(陈建军), Chen Shu-Ming(陈书明), Liang Bin(梁斌), He Yi-Bai(何益百), Chi Ya-Qing(池雅庆), and Deng Ke-Feng(邓科峰) . Chin. Phys. B, 2011, 20(11): 114220.
[13] Synergistic effects of neutron and gamma ray irradiation of commercial CHMOS microcontroller
Jin Xiao-Ming(金晓明), Fan Ru-Yu(范如玉), Chen Wei(陈伟),Lin Dong-Sheng(林东生), Yang Shan-Chao(杨善潮), Bai Xiao-Yan(白小燕), Liu Yan(刘岩),Guo Xiao-Qiang(郭晓强), and Wang Gui-Zhen(王桂珍). Chin. Phys. B, 2010, 19(6): 066104.
[14] Experimental study on radiation effects in floating gate read-only-memories and static random access memories
He Chao-Hui(贺朝会) and Li Yong-Hong(李永宏). Chin. Phys. B, 2007, 16(9): 2773-2778.
No Suggested Reading articles found!