Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 128108    DOI: 10.1088/1674-1056/aca081
Special Issue: TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B
TOPICAL REVIEW—Celebrating 30 Years of Chinese Physics B Prev   Next  

Research progress of Pt and Pt-based cathode electrocatalysts for proton-exchange membrane fuel cells

Ni Suo(索妮), Longsheng Cao(曹龙生), Xiaoping Qin(秦晓平), and Zhigang Shao(邵志刚)
Fuel-Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells&Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Abstract  Proton-exchange membrane fuel cells (PEMFCs) have been widely used commercially to solve the energy crisis and environmental pollution. The oxygen reduction reaction (ORR) at the cathode is the rate-determining step in PEMFCs. Platinum (Pt) catalysts are used to accelerate the ORR kinetics. Pt's scarcity, high cost, and instability in an acidic environment at high potentials seriously hinder the commercialization of PEMFCs. Therefore, studies should explore electrocatalysts with high catalytic activity, enhanced stability, and low-Pt loading. This review briefly introduces the research progress on Pt and Pt-based ORR electrocatalysts for PEMFCs, including anticorrosion catalyst supports, Pt, and Pt-based alloy electrocatalysts. Advanced preparation technology and material characterization of Pt-based ORR electrocatalysts are necessary to improve the performance and corresponding reaction mechanisms.
Keywords:  electrocatalysts      oxygen reduction reaction      activity      stability  
Received:  17 April 2022      Revised:  23 September 2022      Accepted manuscript online:  07 November 2022
PACS:  81.05.U- (Carbon/carbon-based materials)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  81.07.Bc (Nanocrystalline materials)  
  82.45.Jn (Surface structure, reactivity and catalysis)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB1502503) and Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA21090101).
Corresponding Authors:  Zhigang Shao     E-mail:

Cite this article: 

Ni Suo(索妮), Longsheng Cao(曹龙生), Xiaoping Qin(秦晓平), and Zhigang Shao(邵志刚) Research progress of Pt and Pt-based cathode electrocatalysts for proton-exchange membrane fuel cells 2022 Chin. Phys. B 31 128108

[1] Yang L, Cheng D J, Xu H X, Zeng X F, Wan X, Shui J L, Xiang Z H and Cao D P 2018 Proc. Natl. Acad. Sci. USA 115 6626
[2] Gasteiger H A, Panels J E and Yan S G 2004 J. Power Sources 127 162
[3] Tang R, Wei Z D and Shao Z G 2009 Battery Bimonthly 39 44
[4] Yu X and Ye S 2007 J. Power Sources 172 133
[5] Jung N, Chung D Y, Ryu J, Yoo S J and Sung Y E 2014 Nano Today 9 433
[6] Shao Y Y, Liu J, Wang Y and Lin Y H 2009 J. Mater. Chem. 19 46
[7] Luo Y and Alonso-Vante N 2015 Electrochim. Acta 179 108
[8] Tang X J, Fang D H, Qu L J, Xu D Y, Qin X P, Qin B W, Song W, Shao Z G and Yi B L 2019 Chin. J. Catal. 40 504
[9] Li J R, Sharma S, Liu X M, Pan Y T, Spendelow J S, Chi M F, Jia Y K, Zhang P, Cullen D A, Xi Z, Lin H H, Yin Z Y, Shen B, Muzzio M, Yu C, Kim Y S, Peterson A A, More K L, Zhu H Y and Sun S H 2019 Joule 3 124
[10] Wang Q, Zhao Z L, Zhang Z, Feng T L, Zhong R Y, Xu H, Pantelides S T and Gu M 2020 Adv. Sci. 7 1901279
[11] Luo X, Hou Z J, Ming P W, Shao Z G and Yi B L 2008 Chin. J. Catal. 29 330
[12] Watanabe M, Yano H, Uchida H and Tryk D A 2018 J. Electroanal. Chem. 819 359
[13] Najam T, Shah S S A, Ding W, Jiang J X, Jia L, Yao W, Li L and Wei Z D 2018 Angew. Chem. Int. Ed. Engl. 57 15101
[14] Ramaswamy N, Gu W B, Ziegelbauer J M and Kumaraguru S 2020 J. Electrochem. Soc. 167 064515
[15] Yarlagadda V, Carpenter M K, Moylan T E, Kukreja R S, Koestner R K, Gu W B, Thompson L and Kongkanand A 2018 ACS Energy Lett. 3 618
[16] Wang X X, Hwang S, Pan Y T, Chen K, He Y H, Karakalos S, Zhang H G, Spendelow J S, Su D and Wu G 2018 Nano Lett. 18 4163
[17] Zhang C W, Xu L B, Shan N N, Sun T T, Chen J F and Yan Y S 2014 ACS Catal. 4 1926
[18] Sun Y Q, Wu Q and Shi G Q 2011 Energy Environ. Sci. 4 1113
[19] Antolini E 2012 Appl. Catal. B 123-124 52
[20] Tang X J, Zeng Y C, Cao L S, Yang L M, Wang Z Q, Fang D H, Gao Y Y, Shao Z G and Yi B L 2018 J. Mater. Chem. A 6 15074
[21] Zhou L H, Wang Y X, Tang J, Li J X, Wang S L and Wang Y 2017 Micropor. Mesopor. Mater. 247 116
[22] Liu S W, Li C Z, Zachman M J, et al. 2022 Nat. Energy 7 652
[23] Qiao Z, Wang C Y, Li C Z, Zeng Y C, Hwang S, Li B Y, Karakalos S, Park J, Kropf A J, Wegener E C, Gong Q, Xu H, Wang G F, Myers D J, Xie J, Spendelow J S and Wu G 2021 Energy Environ. Sci. 14 4948
[24] Li M H, Yang Z, Pan T X, Tong X, Hu C G and Tian J 2022 J. Mater. Eng. 50 132
[25] Kuttiyiel K A, Sasaki K, Park G G, Vukmirovic M B, Wu L J, Zhu Y M, Chen J G G and Adzic R 2017 Chem. Commun. 53 1660
[26] Wang Y J, Wilkinson D P and Zhang J 2011 Chem. Rev. 111 7625
[27] Huang S Y, Ganesan P, Park S and Popov B N 2009 J. Am. Chem. Soc. 131 13898
[28] Wang J and Swain G M 2003 J. Electrochem. Soc. 150 E24
[29] Antolini E and Gonzalez E R 2009 Solid State Ionics 180 746
[30] Lv H F, Peng T, Wu P, Pan M and Mu S C 2012 J. Mater. Chem. 22 9155
[31] Nie M, Shen P K, Wu M, Wei Z D and Meng H 2006 J. Power Sources 162 173
[32] Zhong C J, Luo J, Fang B, Wanjala B N, Njoki P N, Loukrakpam R and Yin J 2010 Nanotechnology 21 062001
[33] Xia B Y, Ng W T, Wu H B, Wang X and Lou X W D 2012 Angew. Chem. Int. Ed. 51 7213
[34] Xiang Z P, Tan A D, Fu Z Y, Piao J H and Liang Z X 2020 J. Energy Chem. 49 323
[35] Wang C, Daimon H, Lee Y, Kim J and Sun S H 2007 J. Am. Chem. Soc. 129 6974
[36] Marković N M, Adžić R R, Cahan B D and Yeager E B 1994 J. Electroanal. Chem. 377 249
[37] Marković N M, Gasteiger H A and Ross Jr P N 1995 J. Phys. Chem. 99 3411
[38] Yu X and Ye S 2007 J. Power Sources 172 145
[39] Shao Y, Yin G and Gao Y 2007 J. Power Sources 171 558
[40] Hoque M A, Hassan F M, Jauhar A M, Jiang G P, Pritzker M, Choi J Y, Knights S, Ye S Y and Chen Z W 2018 ACS Sustainable Chem. Eng. 6 93
[41] Wang R Y, Higgins D C, Hoque M A, Lee D U, Hassan F and Chen Z W 2013 Sci. Rep. 3 2431
[42] Yao Z Y, Yuan Y L, Cheng T, Gao L, Sun T L, Lu Y F, Zhou Y G, Galindo P L, Yang Z L, Xu L, Yang H and Huang H W 2021 Nano Lett. 21 9354
[43] Wang C, Wang X D, Lai F Y, Liu Z, Dong R H, Li W, Sun H X and Geng B Y 2020 ACS Appl. Nano Mater. 3 5698
[44] Zhai L P, Yang S, Yang X B, Ye W Y, Wang J, Chen W H, Guo Y, Mi L W, Wu Z J, Soutis C, Xu Q and Jiang Z 2020 Chem. Mater. 32 9747
[45] Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J and Zhang T 2011 Nat. Chem. 3 634
[46] Zhu C Z, Fu S F, Shi Q R, Du D and Lin Y 2017 Angew. Chem. Int. Ed. Engl. 56 13944
[47] Liu J, Jiao M G, Lu L L, Barkholtz H M, Li Y P, Wang Y, Jiang L H, Wu Z J, Liu D J, Zhuang L, Ma C, Zeng J, Zhang B S, Su D S, Song P, Xing W, Xu W L, Wang Y, Jiang Z and Sun G Q 2017 Nat. Commun. 8 15938
[48] Liu J, Bak J, Roh J, Lee K S, Cho A, Han J W and Cho E 2021 ACS Catal. 11 466
[49] Zhu X F, Tan X, Wu K H, Haw S C, Pao C W, Su B J, Jiang J J, Smith S C, Chen J M, Amal R and Lu X Y 2021 Angew. Chem. Int. Ed. 60 21911
[50] Zhang H J, Zeng Y C, Cao L S, Yang L M, Fang D H, Yi B L and Shao Z G 2017 Front. Energy 11 260
[51] Sun X H, Jiang K Z, Zhang N, Guo S J and Huang X Q 2015 ACS Nano 9 7634
[52] Luo L X, Fu C H, Wu A M, Zhuang Z C, Zhu F J, Jiang F L, Shen S Y, Cai X Y, Kang Q, Zheng Z F, Hu C Y, Yin J W, Xia G F and Zhang J L 2022 Nano Res. 15 1892
[53] Liu Y X, Du L, Kong F P, Han G K, Gao Y Z, Du C Y, Zuo P J and Yin G P 2019 ACS Sustain. Chem. Eng. 8 1295
[54] Zhang G, Shao Z G, Lu W T, Li G F, Liu F Q and Yi B L 2012 Electrochem Commun. 22 145
[55] Park J Y, Park H S, Han S B, Kwak D H, Won J E, Lim T and Park K W 2019 J. Ind. Eng. Chem. 77 105
[56] Park H Y, Jeon T Y, Jang J H, Yoo S J, Choi K H, Jung N, Chung Y H, Ahn M, Cho Y H, Lee K S and Sung Y E 2013 Appl. Catal. B 129 375
[57] Wang D L, Xin H L L, Hovden R, Wang H S, Yu Y C, Muller D A, Disalvo F J and Abruña H D 2013 Nat. Mater. 12 81
[58] Lim J, Jung C, Hong D, Bak J, Shin J, Kim M, Song D, Lee C, Lim J, Lee H, Lee H M and Cho E 2022 J. Mater. Chem. A 10 7399
[59] Hu Y Z, Shen T, Zhao X R, Zhang J J, Lu Y, Shen J, Lu S F, Tu Z K, Xin H L L and Wang D L 2020 Appl. Catal. B 279 119370
[60] Rong H P, Mao J J, Xin P Y, He D S, Chen Y J, Wang D S, Niu Z Q, Wu Y and Li Y D 2016 Adv. Mater. 28 2540
[61] Wang C, Li D G, Chi M F, Pearson J, Rankin R B, Greeley J, Duan Z Y, Wang G F, van der Vliet D, More K L, Markovic N M and Stamenkovic V R 2012 J. Phys. Chem. Lett. 3 1668
[62] Zhang S, Zhang X, Jiang G M, Zhu H Y, Guo S J, Su D, Lu G and Sun S H 2014 J. Am. Chem. Soc. 136 7734
[63] Chen L, Bock C, Mercier P H J and MacDougall B R 2012 Electrochim. Acta 77 212
[64] Zhu J, Yang Y, Chen L X, Xiao W P, Liu H F, Abruña H D and Wang D L 2018 Chem. Mater. 30 5987
[65] Wang T Y, Liang J S, Zhao Z L, Li S Z, Lu G, Xia Z C, Wang C, Luo J H, Han J T, Ma C, Huang Y H and Li Q 2019 Adv. Energy Mater. 9 1803771
[66] Huang X Q, Zhao Z P, Cao L, Chen Y, Zhu E B, Lin Z Y, Li M F, Yan A M, Zettl A, Wang Y M, Duan X F, Mueller T and Huang Y 2015 Science 348 1230
[67] He C M, Ma Z L, Wu Q, Cai Y Z, Huang Y G, Liu K, Fan Y J, Wang H Q, Li Q Y, Qi J H, Li Q K and Wu X W 2020 Electrochim. Acta 330 135119
[68] Luo Y, Kirchhoff B, Fantauzzi D, Calvillo L, Estudillo-Wong L A, Granozzi G, Jacob T and Alonso-Vante N 2018 ChemSusChem 11 193
[69] Cho K Y, Yeom Y S, Seo H Y, Kumar P, Lee A S, Baek K Y and Yoon H G 2017 ACS Appl. Mater. Interfaces 9 1524
[70] Wang Z X, Yao X Z, Kang Y Q, Xia D S and Gan L 2019 Catalysts 9 569
[71] Liu S C, Li S, Wang R Y, Rao Y, Zhong Q, Hong K and Pan M 2019 J. Electrochem. Soc. 166 F1308
[72] Torihata M, Nakamura M, Todoroki N, Wadayama T and Hoshi N 2021 Electrochem. Commun. 125 107007
[73] Luo L X, Fu C H, Shen S Y, Zhu F J and Zhang J L 2020 J. Mater. Chem. A 8 22389
[74] Zhang S, Guo S J, Zhu H Y, Su D and Sun S H 2012 J. Am. Chem. Soc. 134 5060
[75] Zhu H, Cai Y Z, Wang F H, Gao P and Cao J D 2018 ACS Appl. Mater. Interfaces 10 22156
[76] Sasaki K, Naohara H, Choi Y M, Cai Y, Chen W F, Liu P and Adzic R 2012 Nat. Commun. 3 1115
[77] Arumugam B, Tamaki T and Yamaguchi T 2015 ACS Appl. Mater. Interfaces 7 16311
[78] Miracle D B and Senkov O N 2017 Acta Mater. 122 448
[79] Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K and Lu Z P 2014 Prog. Mater. Sci. 61 1
[80] Chen X T, Si C H, Gao Y L, Frenzel J, Sun J Z, Eggeler G and Zhang Z H 2015 J. Power Sources 273 324
[81] Li S Y, Tang X W, Jia H L, Li H L, Xie G Q, Liu X J, Lin X and Qiu H J 2020 J. Catal. 383 164
[82] Yu Y N, Xia F J, Wang C J, Wu J S, Fu X B, Ma D S, Lin B C, Wang J A, Yue Q and Kang Y J 2022 Nano Res. 15 7868
[1] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[2] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[3] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[7] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[11] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[12] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[13] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[14] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[15] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
No Suggested Reading articles found!