Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 077307    DOI: 10.1088/1674-1056/25/7/077307
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of thermal deformation on giant magnetoresistance of flexible spin valves grown on polyvinylidene fluoride membranes

Luping Liu(刘鲁萍)1,2,3, Qingfeng Zhan(詹清峰)2,3, Xin Rong(荣欣)2,3, Huali Yang(杨华礼)2,3, Yali Xie(谢亚丽)2,3, Xiaohua Tan(谭晓华)1, Run-wei Li(李润伟)2,3
1 Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China;
2 Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
3 Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Abstract  

We fabricated flexible spin valves on polyvinylidene fluoride (PVDF) membranes and investigated the influence of thermal deformation of substrates on the giant magnetoresistance (GMR) behaviors. The large magnetostrictive Fe81Ga19 (FeGa) alloy and the low magnetostrictive Fe19Ni81 (FeNi) alloy were selected as the free and pinned ferromagnetic layers. In addition, the exchange bias (EB) of the pinned layer was set along the different thermal deformation axes α31 or α32 of PVDF. The GMR ratio of the reference spin valves grown on Si intrinsically increases with lowering temperature due to an enhancement of spontaneous magnetization. For flexible spin valves, when decreasing temperature, the anisotropic thermal deformation of PVDF produces a uniaxial anisotropy along the α32 direction, which changes the distribution of magnetic domains. As a result, the GMR ratio at low temperature for spin valves with EB||α32 becomes close to that on Si, but for spin valves with EB||α31 is far away from that on Si. This thermal effect on GMR behaviors is more significant when using magnetostrictive FeGa as the free layer.

Keywords:  giant magnetoresistance      flexible spin-valves      thermal expansion  
Received:  25 February 2016      Revised:  21 March 2016      Accepted manuscript online: 
PACS:  73.43.Qt (Magnetoresistance)  
  75.30.Gw (Magnetic anisotropy)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11374312, 51401230, 51522105, and 51471101 ) and the Ningbo Science and Technology Innovation Team, China (Grant No. 2015B11001).

Corresponding Authors:  Qingfeng Zhan, Yali Xie, Xiaohua Tan     E-mail:  zhanqf@nimte.ac.cn;tanxiaohua123@shu.edu.cn;runweili@nimte.ac.cn

Cite this article: 

Luping Liu(刘鲁萍), Qingfeng Zhan(詹清峰), Xin Rong(荣欣), Huali Yang(杨华礼), Yali Xie(谢亚丽), Xiaohua Tan(谭晓华), Run-wei Li(李润伟) Effect of thermal deformation on giant magnetoresistance of flexible spin valves grown on polyvinylidene fluoride membranes 2016 Chin. Phys. B 25 077307

[1] Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A and Chazelas J 1988 Phy. Rev. Lett. 61 2472
[2] Binasch G, Grünberg P, Saurenbach F and Zinn W 1989 Phys. Rev. B 39 4828(R)
[3] Dieny B, Speriosu V S, Parkin S S P, Gurney B A, Wilhoit D R and Mauri D 1991 Phys. Rev. B 43 1297
[4] Melzer M, Makarov D, Calvimontes A, Karnaushenko D, Baunack S, Kaltofen R, Mei Y and Schmidt O G 2011 Nano Lett. 11 2522
[5] Melzer M, Monch J I, Makarov D, Zabila Y, Canon Bermudez G S, Karnaushenko D, Baunack S, Bahr F, Yan C, Kaltenbrunner M and Schmidt O G 2015 Adv. Mater. 27 1274
[6] Cao W N, Li J, Chen G, Zhu J, Hu C R and Wu Y Z 2011 Appl. Phys. Lett. 98 262506
[7] Buttino G and Poppi M 1997 J. Magn. Magn. Mater. 170 211
[8] Gerhardter F, Li Y and Baberschke K 1993 Phys. Rev. B 47 11204
[9] Kowalewski M, Schneider C M and Heinrich B 1993 Phys. Rev. B 47 8748
[10] Phuoc N N and Ong C K 2013 Adv. Mater. 25 980
[11] Phuoc N N and Ong C K 2013 Appl. Phys. Lett. 102 212406
[12] Shin J, Kim S H, Suwa Y, Hashi S and Lshiyama K 2012 J. Appl. Phys. 111 07E511
[13] Matsukawa N, Odagawa A, Sugita Y, Kawashima Y, Morinaga Y, Satomi M, Hiramoto M and Kuwata J 2002 Appl. Phys. Lett. 81 4784
[14] Fukumoto Y, Shimura K, Kamijo A, Tahara S and Yoda H 2004 Appl. Phys. Lett. 84 233
[15] Liu Y W, Wang B M, Zhan Q F, Tang Z H, Yang H L, Liu G, Zuo Z H, Zhang X S, Xie Y L, Zhu X J, Chen B, Wang J L and Li R W 2014 Sci. Rep. 4 6615
[16] Liu Y W, Zhan Q F and Li R W 2013 Chin. Phys. B 22 127502
[17] Wang Y Y, Quhe R G, Yu D P and Lü J 2015 Chin. Phys. B 24 087201
[18] Song X H and Zhang D L 2008 Chin. Phys. B 17 03495
[19] Yin S L, Liang X J and Zhao H W 2013 Chin. Phys. Lett. 30 087305
[20] Chang H H S, Whatmore R W and Huang Z 2009 J. Appl. Phys. 106 114110
[21] Qin Y F, Yan S S, Kang S S, Xiao S Q, Li Q, Dai Z K, Shen T T, Dai Y Y, Liu G L, Chen Y X, Mei L M and Zhang Z 2011 Chin. Phys. Lett. 20 107501
[22] Parkin S S P 1992 Appl. Phys. Lett. 61 1358
[23] Zhang L, Jiang C B, Shang J X and Xu H B 2009 Chin. Phys. B 18 01647
[24] Kellogg R A, Flatau A B, Clark A E, Wun-Fogle M and Lograsso T A 2002 J. Appl. Phys. 91 7821
[25] Dai G H, Zhan Q F, Liu Y W, Yang H L, Zhang X S, Chen B and Li R W 2012 Appl. Phys. Lett. 100 122407
[26] Zhang X S, Zhan Q F, Dai G H, Liu Y W, Zuo Z H, Yang H L, Chen B and Li R W 2013 J. Appl. Phys. 113 17A901
[27] Rizwan S, Zhang S, Yu T, Zhao Y G and Han X F 2013 J. Appl. Phys. 113 023911
[28] Glazov V M and Pashinkin A S 2001 High Temp. 39 413
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[3] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[4] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[5] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[6] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[7] Negative thermal expansion in NbF3 and NbOF2: A comparative theoretical study
Mingyue Zhang(张明月), Chunyan Wang(王春艳), Yinuo Zhang(张一诺), Qilong Gao(高其龙), and Yu Jia(贾瑜). Chin. Phys. B, 2021, 30(5): 056501.
[8] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[9] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[10] Laser scattering, transmittance and low thermal expansion behaviors in Y2-x(ZnLi)xMo3O12 by forming regular grains
Xian-Sheng Liu(刘献省), Yong-Guang Cheng(程永光), Bao-He Yuan(袁保合), Er-Jun Liang(梁二军), Wei-Feng Zhang(张伟风). Chin. Phys. B, 2019, 28(9): 096501.
[11] Model of output characteristics of giant magnetoresistance (GMR) multilayer sensor
Jiao-Feng Zhang(张教凤), Zheng-Hong Qian(钱正洪), Hua-Chen Zhu(朱华辰), Ru Bai(白茹), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2019, 28(8): 087501.
[12] Conductive property of Zr0.1Fe0.9V1.1Mo0.9O7 with low thermal expansion
Xiaoke He(何小可), Heng Qi(戚恒), Qi Xu(徐启), Xiansheng Liu(刘献省), Lei Xu(许磊), Baohe Yuan(袁保合). Chin. Phys. B, 2019, 28(5): 056501.
[13] Properties of negative thermal expansion β-eucryptite ceramics prepared by spark plasma sintering
Li-Min Zhao(赵利敏), Yong-Guang Cheng(程永光), Hao-Shan Hao(郝好山), Jiao Wang(王娇), Shao-Hui Liu(刘少辉), Bao-Sen Zhang(张宝森). Chin. Phys. B, 2018, 27(9): 096501.
[14] Phase transition and near-zero thermal expansion of Zr0.5Hf0.5VPO7
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Sai-Lei Li(李赛磊), Yan-Jun Ji(纪延俊), Wen-Ying Mu(穆文英), Wei-Wei Feng(冯伟伟), Gao-Jie Zeng(曾高杰), You-Wen Liu(刘友文), Er-Jun Liang(梁二军). Chin. Phys. B, 2018, 27(6): 066501.
[15] Imaging the diffusion pathway of Al3+ ion in NASICON-type (Al0.2Zr0.8)20/19Nb(PO4)3 as electrolyte for rechargeable solid-state Al batteries
Jie Wang(王捷), Chun-Wen Sun(孙春文), Yu-Dong Gong(巩玉栋), Huai-Ruo Zhang(张怀若), Jose Antonio Alonso, María Teresa Fernández-Díaz, Zhong-Lin Wang(王中林), John B Goodenough. Chin. Phys. B, 2018, 27(12): 128201.
No Suggested Reading articles found!