|
|
Angle-dependent spin wave spectra of permalloy ring arrays |
Shuxuan Wu(吴书旋)1, Zengtai Zhu(朱增泰)2, Yunxu Ma(马云旭)1, Jinwu Wei(魏晋武)1, Senfu Zhang(张森富)1, Jianbo Wang(王建波)1,3, and Qingfang Liu(刘青芳)1,† |
1 Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China; 2 Songshan Lake Materials Laboratory, Dongguan 523808, China; 3 Key Laboratory for Special Function Materials and Structural Design of the Ministry of the Education, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract We investigated the angle-dependent spin wave spectra of permalloy ring arrays with the fixed outer diameter and various inner diameters by ferromagnetic resonance spectroscopy and micromagnetic simulation. When the field is obliquely applied to the ring, local resonance mode can be observed in different parts of the rings. And the resonance mode will change to perpendicular spin standing waves if the magnetic field is applied along the perpendicular direction. The simulation results demonstrated this evolution and implied more resonance modes that maybe exist. And the mathematical fitting results based on the Kittel equation further proved the existence of local resonance mode.
|
Received: 30 June 2022
Revised: 04 August 2022
Accepted manuscript online: 19 August 2022
|
PACS:
|
75.30.Ds
|
(Spin waves)
|
|
32.30.Dx
|
(Magnetic resonance spectra)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074158, 12174166, and 12104197). |
Corresponding Authors:
Qingfang Liu
E-mail: liuqf@lzu.edu.cn
|
Cite this article:
Shuxuan Wu(吴书旋), Zengtai Zhu(朱增泰), Yunxu Ma(马云旭), Jinwu Wei(魏晋武), Senfu Zhang(张森富), Jianbo Wang(王建波), and Qingfang Liu(刘青芳) Angle-dependent spin wave spectra of permalloy ring arrays 2022 Chin. Phys. B 31 117505
|
[1] Neusser S and Grundler D 2009 Adv. Mater. 21 2927 [2] Podbielski J, Giesen F and Grundler F 2006 Phys. Rev. Lett. 96 167207 [3] Ding J, Singh N, Kostylev M and Adeyeye A O 2013 Phys. Rev. B 88 014301 [4] Zhou X and Adeyeye A O 2016 Phys. Rev. B 94 054410 [5] Zhu Z, Feng Z, Cheng X, Xie H, Liu Q and Wang J 2018 J. Phys. D: Appl. Phys. 51 045004 [6] Jorzick J, Demokritov S O, Hillebrands B, Bailleul M, Fermon C, Guslienko K Y, Slavin A N, Berkov D V and Gorn N L 2002 Phys. Rev. Lett. 88 047204 [7] Breitling A, Bublat T and Goll D 2009 Phys. Status Solidi - R 3 130 [8] Adeyeye A O and Singh N 2008 J. Phys. D: Appl. Phys. 41 153001 [9] Shaw J M, Silva T J, Schneider M L and McMichael R D 2009 Phys. Rev. B 79 184404 [10] Tse D H Y, Steinmuller S J, Trypiniotis T, Anderson D, Jones G A C, Bland J A C and Barnes C H W 2009 Phys. Rev. B 79 054426 [11] Wang C C, Adeyeye A O and Singh N 2006 Nanotechnology 17 1629 [12] Martyanov O N, Yudanov V F, Lee R N, Nepijko S A, Elmers H J, Hertel R, Schneider C M and Sch?nhense G 2007 Phys. Rev. B 75 174429 [13] Dutra R, Gonzalez-Chavez D E, Marcondes T L, Sommer R L, Parreiras S O and Martins M D 2019 Phys. Rev. B 99 014413 [14] Wen Z C, Wei H X, Han X F 2007 Appl. Phys. Lett. 91 122511 [15] Wei H X, He J X, Wen Z C, Han X F, Zhan W S and Zhang S F 2008 Phys. Rev. B 77 134432 [16] Qin J Y, Chen X, Yu T, Wang X, Guo C Y, Wan C H, Feng J F, Wei H X, Liu Y W and Han X F 2018 Phys. Rev. Appl. 10 044067 [17] Chen X, Qin J Y, Yu T, Han X F and Liu Y W 2018 Appl. Phys. Lett. 113 142406 [18] Herring C and Kittel C 1951 Phys. Rev. 81 869 [19] Shimon G, Adeyeye A O and Ross C A 2014 Phys. Rev. B 89 024302 [20] Zhou X, Tartakovskaya E V, Kakazei G N and Adeyeye A O 2017 Phys. Rev. B 96 024446 [21] Zhou X, Ding J, Kostylev M and Adeyeye A O 2015 Appl. Phys. Lett. 106 112403 [22] Taurel B, Valet T, Naletov V V, Vukadinovic N, de Loubens G and Klein O 2016 Phys. Rev. B 93 184427 [23] R Zarzuela, E M Chudnovsky and Tejada J 2013 Phys. Rev. B 87 014413 [24] Castel V, Ben Youssef J, Boust F, Weil R, Pigeau B, de Loubens G, Naletov V V, Klein O and Vukadinovic N 2012 Phys. Rev. B 85 184419 [25] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Van Waeyenberge B 2014 AIP Advances 4 107133 [26] Gilbert T L 2004 IEEE Trans. Magn. 40 3443 [27] Rameev B, Yildiz F, Kazan S, Aktas B, Gupta A, Tagirov L R, Rata D, Buergler D, Gruenberg P, Schneider C M, K?mmerer S, Reiss G and Hütten A 2006 Phys. Status Solidi A 203 1503 [28] Kittel C 1948 Phys. Rev. 73 155 [29] Mizukami S, Ando Y and Miyazaki T 2001 Jpn. J. Appl. Phys. 40 580 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|