Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 107901    DOI: 10.1088/1674-1056/ac76a9
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Characteristics of secondary electron emission from few layer graphene on silicon (111) surface

Guo-Bao Feng(封国宝)1, Yun Li(李韵)1,†, Xiao-Jun Li(李小军)1, Gui-Bai Xie(谢贵柏)1, and Lu Liu(刘璐)2
1. National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology, Xi'an 710100, China;
2. School of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
Abstract  As a typical two-dimensional (2D) coating material, graphene has been utilized to effectively reduce secondary electron emission from the surface. Nevertheless, the microscopic mechanism and the dominant factor of secondary electron emission suppression remain controversial. Since traditional models rely on the data of experimental bulk properties which are scarcely appropriate to the 2D coating situation, this paper presents the first-principles-based numerical calculations of the electron interaction and emission process for monolayer and multilayer graphene on silicon (111) substrate. By using the anisotropic energy loss for the coating graphene, the electron transport process can be described more realistically. The real physical electron interactions, including the elastic scattering of electron—nucleus, inelastic scattering of the electron—extranuclear electron, and electron—phonon effect, are considered and calculated by using the Monte Carlo method. The energy level transition theory-based first-principles method and the full Penn algorithm are used to calculate the energy loss function during the inelastic scattering. Variations of the energy loss function and interface electron density differences for 1 to 4 layer graphene coating GoSi are calculated, and their inner electron distributions and secondary electron emissions are analyzed. Simulation results demonstrate that the dominant factor of the inhibiting of secondary electron yield (SEY) of GoSi is to induce the deeper electrons in the internal scattering process. In contrast, a low surface potential barrier due to the positive deviation of electron density difference at monolayer GoSi interface in turn weakens the suppression of secondary electron emission of the graphene layer. Only when the graphene layer number is 3, does the contribution of surface work function to the secondary electron emission suppression appear to be slightly positive.
Keywords:  secondary electron emission      graphene on silicon      numerical simulation  
Received:  31 March 2022      Revised:  15 May 2022      Accepted manuscript online: 
PACS:  79.20.Hx (Electron impact: secondary emission)  
  81.05.ue (Graphene)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61901360 and 12175176), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2020JQ-644), and the Scientific Research Projects of the Shaanxi Education Department, China (Grant No. 20JK0808).
Corresponding Authors:  Yun Li     E-mail:  liy74@cast504.com,genliyun@126.com

Cite this article: 

Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐) Characteristics of secondary electron emission from few layer graphene on silicon (111) surface 2022 Chin. Phys. B 31 107901

[1] Chang C, Liu G Z, Tang C X, Chen C H, Shao H and Huang W H 2010 Appl. Phys. Lett. 96 111502
[2] Rasch J, Anderson D and Semenov V E 2013 J. Phys. D: Appl. Phys. 46 505201
[3] Rozario N, Lenzing H F, Reardon K F, Zarro M S and Baran C G 1994 IEEE Trans. Microwave Theory Tech. 42 558
[4] Nagesh S K, Revannasiddiah D and Shastry S V K 2005 Pramana 64 95
[5] Arregui I, Teberio F, Arnedo I, Lujambio A, Chudzik M, Benito D, Lopetegi T, Jost R, Görtz F, Gil J, Vicente C, Gimeno B, Boria V E, Raboso D and Laso M A G 2013 IEEE Trans. Microwave Theory Tech. 61 4376
[6] Graves T P, Hubble A A and Partridge P T 2016 IEEE International Conference on Plasma Science (ICOPS), June 19—23, 2016, Banff, AB, Canada, p. 1
[7] Shen F, Wang X, Cui W Z and Ran L 2020 IEEE Trans. Plasma Sci. 48 433
[8] Kudsia C, Cameron R and Tang W 1992 IEEE Trans. Microwave Theory Tech. 40 1133
[9] Tang W and Kudsia C M 1990 IEEE Conference on Military Communications, September 30—October 3, 1990, Monterey, CA, USA, pp. 181—187
[10] Hubble A A, Feldman M S, Partridge P T and Spektor R 2019 Phys. Plasmas 26 053502
[11] Wang H, Bai X, Liu L, Liu D and Meng L 2020 Plasma Sources Sci. Technol. 29 125012
[12] Nistor V, Gonzalez L A, Aguilera L, Montero I, Galan L, Wochner U and Raboso D 2014 Appl. Surf. Sci. 315 445
[13] Zhang X, Xiao Y T and Gimeno B 2020 IEEE Trans. Electron Dev. 67 5723
[14] Liu L, Feng G B, Chen B D, Wang N and Cui W Z 2021 AIP Adv. 11 025332
[15] Montero I, Aguilera L, Davila M E, Nistor V C, Gonzalez L A, Galan L, Raboso D and Ferritto R 2014 Appl. Surf. Sci. 291 74
[16] Wang J, Wang Y, Xu Y H, Zhang Y X, Zhang B and Wei W 2016 Chin. Phys. C 40 117003
[17] Riccardi P, Cupolillo A, Pisarra M, Sindona A and Caputi L S 2012 Appl. Phys. Lett. 101 183102
[18] Cao M, Zhang X S, Liu W H, Wang H G and Li Y D 2017 Diamond Relat. Mater. 73 199
[19] Wang X J, Wang D W and Li Y D 2018 Journal of Mechanical Engineering 54 115
[20] Ye M, He Y N, Hu S G, Wang R, Hu T C, Yang J and Cui W Z 2013 J. Appl. Phys. 113 074904
[21] Hu X C, Zhang X W, Zhang R and Gu W P 2020 Results Phys. 19 103475
[22] Vaughan J R M 1989 IEEE Trans. Electron Dev. 36 1963
[23] Furman M A and Pivi M T F 2013 Phys. Rev. Spec. Top-Ac 16 069901
[24] Li Y D, Yang W J, Zhang N, Cui W Z and Liu C L 2013 Acta Phys. Sin. 62 077901 (in Chinese)
[25] Ding Z J and Shimizu R 1996 Scanning 18 92
[26] Feng G B, Liu L, Cui W Z and Wang F 2020 Chin. Phys. B 29 048703
[27] Nguyen H K, Mankowski J, Dickens J C, Neuber A A and Joshi R P 2017 Phys. Plasmas 24 124501
[28] Mao S, Li Y, Zeng R and Ding Z J 2009 J. Appl. Phys. 104 114907
[29] Penn D R 1987 Phys. Rev. B 35 482
[30] Khan M, Xu J N, Chen N and Cao W B 2012 J. Alloys Compd. 513 539
[31] Berahman M, Asad M, Sanaee M and Sheikhi M H 2015 Opt. Quantum Electron. 47 3289
[32] Derkaoui Z, Kebbab Z, Miloua R and Benramdane N 2009 Solid State Commun. 149 1231
[33] Ueda Y, Suzuki Y and Watanabe K 2018 Appl. Phys. Express 11 105101
[34] Ewski Z, Maccallum D, Romig A and Joy D C 1990 J. Appl. Phys. 68 3066
[35] Yan R Q, Cao M and Li Y D 2020 Materials 15 3315
[36] Mao S F, Li Y G, Zeng R G and Ding Z J 2008 J. Appl. Phys. 104 114907
[37] Shinotsuka H, Tanuma S, Powell C J and Penn D R 2012 Nucl. Instrum. Methods Phys. Res., Sect. B 270 75
[38] Shinotsuka H, Tanuma S, Powell C J and Penn D R 2015 Surf. Interface Anal. 47 871
[39] Ashley J C 1988 J. Electron Spectrosc. Relat. Phenom. 46 199
[40] Fröhlich H and Taylor A W B 1964 Proc. Phys. Soc. 83 739
[41] Fröhlich H and Mitra T K 1968 J. Phys. C: Solid State Phys. 1 548
[42] Henke B L, Gullikson E M and Davis J C 1993 At. Data Nucl. Data Tables 54 181
[43] Head J D and Zerner M C 1985 Chem. Phys. Lett. 122 264
[44] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[45] Perdew J P, Ruzsinszky A and Csonka G I 2008 Phys. Rev. Lett. 100 136406
[46] Dong W, Kresse G, Furthmüller J and Hafner 1996 Phys. Rev. B 54 2157
[47] Feng G B, Cao M, Yan L P and Zhang H B 2013 Micron 52—53 62
[48] Wang F, Feng G B, Zhang X S and Cao M 2016 Micron 90 64
[49] Llacer J and Garwin E L 1969 J. Appl. Phys. 40 2766
[50] Cazaux J 2011 J. Appl. Phys. 110 024906
[51] Cazaux J 2010 Appl. Surf. Sci. 257 1002
[52] Guo J, Wang D and Wen K 2020 Ceram. Int. 46 8352
[53] Zhu X, Guo J and Li X 2021 Appl. Sci. 11 4801
[54] Leenaerts O, Partoens B and Peeters F M 2017 J. Phys.: Condens. Matter 29 035003
[55] Eberlein T, Bangert U and Nair R R 2008 Phys. Rev. B 77 233406
[56] Chaoui Z, Ding Z J and Goto K 2009 Phys. Rev. A 373 1679
[57] Ohta T, Bostwick A and Mcchesney J L 2007 Phys. Rev. Lett. 98 206802
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Secondary electron emission yield from vertical graphene nanosheets by helicon plasma deposition
Xue-Lian Jin(金雪莲), Pei-Yu Ji(季佩宇), Lan-Jian Zhuge(诸葛兰剑), Xue-Mei Wu(吴雪梅), and Cheng-Gang Jin(金成刚). Chin. Phys. B, 2022, 31(2): 027901.
[7] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[8] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[9] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[10] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[11] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[12] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[13] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[14] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
[15] Analysis of secondary electron emission using the fractal method
Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光辉), Rui Wang(王瑞), Na Zhang(张娜), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2021, 30(1): 017901.
No Suggested Reading articles found!