Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 104101    DOI: 10.1088/1674-1056/ac5881
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Single-beam leaky-wave antenna with wide scanning angle and high scanning rate based on spoof surface plasmon polariton

Huan Jiang(蒋欢)1,†, Xiang-Yu Cao(曹祥玉)1,2,‡, Tao Liu(刘涛)1, Liaori Jidi(吉地辽日)1, and Sijia Li(李思佳)1,2
1. Information and Navigation College, Air Force Engineering University, Xi'an 710077, China;
2. Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Air Force Engineering University, Xi'an 710051, China
Abstract  We propose a single-beam leaky-wave antenna (LWA) with a wide-scanning angle and a high-scanning rate based on spoof surface plasmon polariton (SSPP) in this paper. The SSPP transmission line (TL) is etched with periodically arranged circular patches, which converts the slow-wave mode into the fast-wave region for radiation. The proposed LWA is designed, fabricated, and tested. The simulated results imply that the proposed LWA not only achieves a high radiation efficiency of about 81.4%, and a high scanning rate of 12.12, but also has a large scanning angle of 176° over a narrow operation bandwidth of 8.3—9.6 GHz (for |S11|<-10 dB). In addition, the simulated average gain of the LWA can reach as high as 10.9 dBi. The measured scanning angle range is 175° in the operation band of 8.2—9.6 GHz, and the measured average gain is 10.6 dBi. The experimental results are consistent with the simulation, validating its performance. An antenna with high radiation efficiency, wide scanning angle range, and high scanning rate has great potential for application in radar and wireless communication systems.
Keywords:  spoof surface plasmon polariton (SSPP)      leaky wave antenna      wide scanning angle      high scanning rate  
Received:  06 January 2022      Revised:  09 February 2022      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62171460 and 61801508), the Natural Science Basic Research Program of Shaanxi Province, China (Grant Nos. 2020JM-350, 20200108, 20210110, and 2020022), the Postdoctoral Innovative Talents Support Program of China (Grant Nos. BX20180375, 2019M653960, and 2021T140111).
Corresponding Authors:  Huan Jiang, Xiang-Yu Cao     E-mail:  huan_er_ya@163.com;xiangyucaokdy@163.com

Cite this article: 

Huan Jiang(蒋欢), Xiang-Yu Cao(曹祥玉), Tao Liu(刘涛), Liaori Jidi(吉地辽日), and Sijia Li(李思佳) Single-beam leaky-wave antenna with wide scanning angle and high scanning rate based on spoof surface plasmon polariton 2022 Chin. Phys. B 31 104101

[1] Kianinejad A, Chen Z N and Qiu C W 2017 IEEE Trans. Antennas Propag. 65 681
[2] Li S J, Li Y B, Zhang L, et al. 2021 Laser Photonics Rev. 15 2000449
[3] Han B W, Li S J, Li Z Y, et al. 2021 Opt. Express 29 19643
[4] Li Z Y, Li S J, Han B W, et al. 2021 Adv. Theory Simul. 4 2100117
[5] Li S J, Li Y B, Li H, et al. 2020 Annalen der Physik 532 2000020
[6] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[7] Tian D, Xu R, Peng G, Li J, Xu Z, Zhang A and Ren Y 2018 IEEE Antennas Wirel. Propag. Lett. 17 837
[8] Jaiswal R K, Pandit N and Pathak N P 2018 IEEE Photonic. Tech. L. 31 218
[9] Wei D, Li J, Yang J, Qi Y and Yang G 2018 IEEE Antennas Wirel. Propag. Lett. 17 1566
[10] Kong G S, Ma H F, Cai B G and Cui T J 2016 Sci. Rep. 6 29600
[11] Xu S, et al. 2019 IEEE Antennas Wirel. Propag. Lett. 18 1386
[12] Wang M, Ma H F, Tang W X, et al. 2019 Phys. Rev. Appl. 12 014036
[13] Liao D, Zhang Y and Wang H 2018 IEEE Antennas Wirel. Propag. Lett. 17 1238
[14] Zhang G, Zhang Q F, Chen Y F and Murch R D 2019 IEEE Trans. Antennas Propag. 68 2531
[15] Guan D F, Zhang Q F, You P, et al. 2018 IEEE Trans. Antennas Propag. 66 3747
[16] Wang J, Zhao L, Hao Z C and Cui T J 2020 IEEE Trans. Antennas Propag. 68 7652
[17] Ma H F, Shen X, Cheng Q, et al. 2014 Laser Photonics Rev. 8 146
[18] Otto S, RenningsA, Solbach K and Caloz C 2011 IEEE Trans. Antennas Propag. 59 3695
[19] Paulotto S, Baccarelli P, Frezza F and Jackson D R 2009 IEEE Trans. Antennas Propag. 57 1894
[20] Yang N, Caloz C and Wu K 2010 IEEE T. on Microw. Theory 58 2619
[21] Tang X L, Zhang Q, Hu S, Zhuang Y, Kandwal A, Zhang G and Chen Y 2017 Sci. Rep. 7 11685
[22] Otto S, Al-Bassam A, Rennings A, Solbach K and Caloz C 2012 IEEE Antennas Wirel. Propag. Lett. 11 612
[23] Wei D J, Li J Y, Yang J J, Qi Y X and Yang G W 2018 IEEE Antennas Wirel. Propag. Lett. 17 1566
[24] Jidi L R, Cao X Y, Zhu X W and Zhu B W 2018 Prog. Electrom. Res. Le. 77 117
[25] Yin J Y, Zhang Q, Zhang H C, Liu Y Q, Li Y B, Wan X and Cui T J 2016 IEEE Trans. Antennas Propag. 64 5181
[26] Chang K 2000 RF and Microwave Wireless Systems pp. 111—148
[1] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[2] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[3] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[4] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
[5] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[6] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
[7] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[8] Design method of reusable reciprocal invisibility and phantom device
Cheng-Fu Yang(杨成福), Li-Jun Yun(云利军), and Jun-Wei Li(李俊玮). Chin. Phys. B, 2022, 31(8): 084101.
[9] Goos-Hänchen and Imbert-Fedorov shifts in tilted Weyl semimetals
Shuo-Qing Liu(刘硕卿), Yi-Fei Song(宋益飞), Ting Wan(万婷), You-Gang Ke(柯友刚), and Zhao-Ming Luo(罗朝明). Chin. Phys. B, 2022, 31(7): 074101.
[10] A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications
Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平). Chin. Phys. B, 2022, 31(5): 054102.
[11] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[12] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[13] Strong chirality in twisted bilayer α-MoO3
Bi-Yuan Wu(吴必园), Zhang-Xing Shi(石章兴), Feng Wu(吴丰), Ming-Jun Wang(王明军), and Xiao-Hu Wu(吴小虎). Chin. Phys. B, 2022, 31(4): 044101.
[14] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[15] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
No Suggested Reading articles found!