Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 103401    DOI: 10.1088/1674-1056/ac873c
RAPID COMMUNICATION Prev   Next  

Experimental realization of two-dimensional single-layer ultracold gases of 87Rb in an accordion lattice

Liangwei Wang(王良伟)1,2, Kai Wen(文凯)1,2, Fangde Liu(刘方德)1,2, Yunda Li(李云达)1,2, Pengjun Wang(王鹏军)1,2, Lianghui Huang(黄良辉)1,2, Liangchao Chen(陈良超)1,2, Wei Han(韩伟)1,2, Zengming Meng(孟增明)1,2,†, and Jing Zhang(张靖)1,2,‡
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-electronics, Shanxi University, Taiyuan 030006, China;
2. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  We experimentally realize two-dimensional (2D) single-layer ultracold gases of 87Rb by dynamically tuning the periodicity of a standing wave, known as accordion lattice. In order to load 87Rb Bose—Einstein condensate into single dark fringe node of the blue detuning optical lattice, we reduce the lattice periodicity from 26.7 μ to 3.5 μ with the help of an acousto-optic deflector (AOD) to compress the three-dimensional BEC adiabatically into a flat and uniform quasi-2D single-layer. We describe the experimental procedure of the atoms loading into the accordion lattice in detail and present the characteristics of the quasi-2D ultracold gases. This setup provides an important platform for studying in- and out-of equilibrium physics, phase transition and 2D topological matter.
Keywords:  two-dimensional ultracold gases      accordion lattice      anisotropy  
Received:  16 June 2022      Revised:  25 July 2022      Accepted manuscript online: 
PACS:  34.20.Cf (Interatomic potentials and forces)  
  67.85.Hj (Bose-Einstein condensates in optical potentials)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  32.10.Dk (Electric and magnetic moments, polarizabilities)  
Fund: Project supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302003), the National Key Research and Development Program of China (Grant Nos. 2016YFA0301602, 2018YFA0307601, and 2021YFA1401700), the National Natural Science Foundation of China (Grant Nos. 12034011, 92065108, 11974224, 12022406, and 12004229), the Natural Science Basic Research Plan of Shaanxi Province, China (Grant No. 2019JQ- 058), and the Fund for Shanxi “1331 Project” Key Subjects Construction.
Corresponding Authors:  Zengming Meng, Jing Zhang     E-mail:  zmmeng01@sxu.edn.cn;jzhang74@sxu.edu.cn

Cite this article: 

Liangwei Wang(王良伟), Kai Wen(文凯), Fangde Liu(刘方德), Yunda Li(李云达), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), Liangchao Chen(陈良超), Wei Han(韩伟), Zengming Meng(孟增明), and Jing Zhang(张靖) Experimental realization of two-dimensional single-layer ultracold gases of 87Rb in an accordion lattice 2022 Chin. Phys. B 31 103401

[1] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
[2] Greiner M, Mandel O, Esslinger T, Hönsch T W and Bloch I 2002 Nature 415 39
[3] Winkler K, Thalhammer G, Lang F, Grimm R, Denschlag J H, Daley A J, Kantian A, Büchler H P and Zoller P 2006 Nature 441 853
[4] Esslinger T 2010 Annu. Rev. Condens. Matter Phys. 1 129
[5] Cheuk L W, Nichols M A, Lawrence K R, Okan M, Zhang H, Khatami E, Trivedi N, Paiva T, Rigol M and Zwierlein M W 2016 Science 353 1260
[6] Parsons M F, Mazurenko A, Chiu C S, Ji G, Greif D and Greiner M 2016 Science 353 1253
[7] Ha L C, Hung C L, Zhang X, Eismann U, Tung S K and Chin C 2013 Phys. Rev. Lett. 110 145302
[8] Wen K, Wang L W, Zhou F, Chen L C, Wang P J, Meng Z M and Zhang J 2020 Acta. Phys. Sin. 69 193201 (in Chinese)
[9] Chen L C, Wang P J, Meng Z M, Huang L H, Cai H, Wang D W, Zhu S Y and Zhang J 2018 Phys. Rev. Lett. 120 193601
[10] Yang G Y, Chen L C, Mi C D, Wang P J and Zhang J 2018 Journal of Quantum Optics 24 156
[11] Chen L C, Yang G Y, Meng Z M, Huang L H and Wang P J 2017 Journal of Quantum Optics 23 246
[12] Paredes B, Widera A, Murg V, Mandel O, Fölling S, Cirac I, Shlyapnikov G V, H ö nsch T W and Bloch I 2004 Nature 429 277
[13] Tolra B L, O'Hara K M, Huckans J H, Phillips W D, Rolston S L and Porto J V 2004 Phys. Rev. Lett. 92 190401
[14] Palzer S, Zipkes C, Sias C and Köhl M 2009 Phys. Rev. Lett. 103 150601
[15] Fallani L, Fort C, Lye J E and Inguscio M 2005 Opt. Express 13 4303
[16] Huckans J H 2006 Optical Lattices and Quantum Degenerate 87 Rb in Reduced Dimensions ( Ph.D. thesis ) (University of Maryland)
[17] Kosterlitz J M and Thouless D J 1972 J. Phys. C: Solid State Phys. 5 L124
[18] Kosterlitz J M and Thouless D J 1973 J. Phys. C: Solid State Phys. 6 1181
[19] Kosterlitz J M 2017 Rev. Mod. Phys. 89 040501
[20] Hadzibabic Z, Krüger P, Cheneau M, Battelier B and Dalibard J 2006 Nature 441 1118
[21] Schweikhard V, Tung S and Cornell E A 2007 Phys. Rev. Lett. 99 030401
[22] Hadzibabic Z, Krüger P, Cheneau M, Rath S P and Dalibard J 2008 New J. Phys. 10 045006
[23] Murthy P A, Boettcher I, Bayha L, Holzmann M, Kedar D, Neidig M, Ries M G, Wenz A N, Zürn G and Jochim S 2015 Phys. Rev. Lett. 115 010401
[24] Gemelke N, Zhang X, Hung C L and Chin C 2009 Nature 460 995
[25] Choi J y, Seo S W and Shin Y i 2013 Phys. Rev. Lett. 110 175302
[26] Mihalache D, Mazilu D, Malomed B A and Lederer F 2006 Phys. Rev. A 73 043615
[27] Rath S P, Yefsah T, Günter K J, Cheneau M, Desbuquois R, Holzmann M, Krauth W and Dalibard J 2010 Phys. Rev. A 82 013609
[28] Kendrick L H 2019 An optical accordion trap for two-dimensional ultracold gases of 6Li and 23Na ( Ph.D. thesis ) (Massachusetts Institute of Technology)
[29] Venkatakrishnan K, Sivakumar N R, Hee C W, Tan B, Liang W L and Gan G K 2003 Appl. Phys. A 77 959
[30] Williams R A, Pillet J D, Al-Assam S, Fletcher B, Shotter M and Foot C J 2008 Opt. Express 16 16977
[31] Al-Assam S, Williams R A and Foot C J 2010 Phys. Rev. A 82 021604
[32] Lippi E 2017 Realization of a large-spacing optical lattice for trapping fermionic lithium gases in two dimensions ( Master thesis ) (University of Firenze)
[33] Ville J L, Bienaimé T, Saint-Jalm R, Corman L, Aidelsburger M, Chomaz L, Kleinlein K, Perconte D, Nascimbéne S, Dalibard J and Beugnon J 2017 Phys. Rev. A 95 013632
[34] Mitra D 2018 Exploring attractively interacting fermions in 2D using a quantum gas microscope ( Ph.D. thesis ) (Princeton University)
[35] Christenhusz M T M 2020 2D Box Traps for Bose-Einstein Condensates ( Master thesis ) (University of Twente)
[36] Gauthier G 2019 Transport and turbulence in quasi-uniform and versatile Bose-Einstein condensates ( Ph.D. thesis ) (The University of Queensland)
[37] Petrov D S, Holzmann M and Shlyapnikov G V 2000 Phys. Rev. Lett. 84 2551
[38] Yefsah T, Desbuquois R, Chomaz L, Günter K J and Dalibard J 2011 Phys. Rev. Lett. 107 130401
[39] Bakkali-Hassani B, Maury C, Zou Y Q, Le Cerf É, Saint-Jalm R, Castilho P C M, Nascimbene S, Dalibard J and Beugnon J 2021 Phys. Rev. Lett. 127 023603
[40] Chen C A and Hung C L 2021 Phys. Rev. Lett. 127 023604
[41] Chai S J, Wang P J, Fu Z K, Huang L H and Zhang J 2012 Journal of Quantum Optics 18 171
[42] Wu Y D, Meng Z M, Wen K, Mi C D, Zhang J and Zhai H 2020 Chin. Phys. Lett. 37 103201
[43] Peng P, Huang L H, Li D H, Wang P J, Meng Z M and Zhang J 2018 Chin. Phys. Lett. 35 063201
[44] Meng Z M, Wang L W, Han W, Liu F D, Wen K, Gao C, Wang P J, Chin C and Zhang J 2018 arXiv:2110.00149v2 [cond-mat.quant-gas]
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[3] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[6] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[7] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[10] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[11] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[12] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[13] Effect of interface anisotropy on tilted growth of eutectics: A phase field study
Mei-Rong Jiang(姜美荣), Jun-Jie Li(李俊杰), Zhi-Jun Wang(王志军), and Jin-Cheng Wang(王锦程). Chin. Phys. B, 2022, 31(10): 108101.
[14] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[15] Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
Jieyu Zhou(周婕妤), Jianhong Rong(荣建红), Huan Wang(王焕), Guohong Yun(云国宏), Yanan Wang(王娅男), and Shufei Zhang(张舒飞). Chin. Phys. B, 2022, 31(1): 017601.
No Suggested Reading articles found!