Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 098203    DOI: 10.1088/1674-1056/ac7459

Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions

Jieru Xu(许洁茹)1,2,3,4, Qiuchen Wang(王秋辰)1,2, Wenlin Yan(闫汶琳)1,2,3,4, Liquan Chen(陈立泉)1,2,3,4, Hong Li(李泓)1,2,3,4, and Fan Wu(吴凡)1,2,3,4,5,†
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang 213300, China;
4 Yangtze River Delta Physics Research Center, Liyang 213300, China;
5 Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
Abstract  Sulfide solid electrolytes are widely regarded as one of the most promising technical routes to realize all-solid-state batteries (ASSBs) due to their high ionic conductivity and favorable deformability. However, the relatively high price of the crucial starting material, Li2S, results in high costs of sulfide solid electrolytes, limiting their practical application in ASSBs. To solve this problem, we develop a new synthesis route of Li2S via liquid-phase synthesis method, employing lithium and biphenyl in 1, 2-dimethoxyethane (DME) ether solvent to form a lithium solution as the lithium precursor. Because of the comparatively strong reducibility of the lithium solution, its reaction with sulfur proceeds effectively even at room temperature. This new synthesis route of Li2S starts with cheap precursors of lithium, sulfur, biphenyl and DME solvent, and the only remaining byproduct (DME solution of biphenyl) after the collection of Li2S product can be recycled and reused. Besides, the reaction can proceed effectively at room temperature with mild condition, reducing energy cost to a great extent. The as-synthesized Li2S owns uniform and extremely small particle size, proved to be feasible in synthesizing sulfide solid electrolytes (such as the solid-state synthesis of Li6PS5Cl). Spontaneously, this lithium solution can be directly employed in the synthesis of Li3PS4 solid electrolytes via liquid-phase synthesis method, in which the centrifugation and heat treatment processes of Li2S are not necessary, providing simplified production process. The as-synthesized Li3PS4 exhibits typical Li+ conductivity of 1.85×10-4 S·cm-1 at 30 ℃.
Keywords:  lithium sulfide      sulfide solid electrolyte      liquid phase synthesis      lithium-based organic solution  
Received:  07 May 2022      Revised:  25 May 2022      Accepted manuscript online:  29 May 2022
PACS:  82.47.Aa (Lithium-ion batteries)  
  65.40.gk (Electrochemical properties)  
  82.45.Gj (Electrolytes)  
Fund: This work is supported by Key R&D Project funded by Department of Science and Technology of Jiangsu Province (Grant No. BE2020003), Key Program-Automobile Joint Fund of National Natural Science Foundation of China (Grant No. U1964205), General Program of National Natural Science Foundation of China (Grant No. 51972334), General Program of National Natural Science Foundation of Beijing (Grant No. 2202058), Cultivation Project of Leading Innovative Experts in Changzhou City (Grant No. CQ20210003), National Overseas High-level Expert Recruitment Program (Grant No. E1JF021E11), Talent Program of Chinese Academy of Sciences, "Scientist Studio Program Funding" from Yangtze River Delta Physics Research Center and Tianmu Lake Institute of Advanced Energy Storage Technologies (Grant No. TIES-SS0001), and Science and Technology Research Institute of China Three Gorges Corporation (Grant No. 202103402).
Corresponding Authors:  Fan Wu     E-mail:

Cite this article: 

Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡) Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions 2022 Chin. Phys. B 31 098203

[1] Liu L, Xu J, Wang S, Wu F, Li H and Chen L 2019 eTransportation 1 100010
[2] Kanno R and Murayama M 2001 J. Electrochem. Soc. 148 A742
[3] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K and Mitsui A 2011 Nat. Mater. 10 682
[4] Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H and Kanno R 2016 Nat. Energy 1 16030
[5] Sakuda A 2018 J. Ceram. Soc. Jpn. 126 675
[6] Hayashi A, Hama S, Minami T and Tatsumisago M 2003 Electrochem. Commun. 5 111
[7] Seino Y, Nakagawa M, Senga M, Higuchi H, Takada K and Sasaki T 2015 J. Mater. Chem. A 3 2756
[8] Ohara K, Mitsui A, Mori M, Onodera Y, Shiotani S, Koyama Y, Orikasa Y, Murakami M, Shimoda K, Mori K, Fukunaga T, Arai H, Uchimoto Y and Ogumi Z 2016 Sci Rep 6 21302
[9] Minami K, Mizuno F, Hayashi A and Tatsumisago M 2007 Solid State Ionics 178 837
[10] Hayashi A, Yamashita H, Tatsumisago M and Minami T 2002 Solid State Ionics 148 381
[11] Kim Y and Martin S 2006 Solid State Ionics 177 2881
[12] Liu Z, Fu W, Payzant E A, Yu X, Wu Z, Dudney N J, Kiggans J, Hong K, Rondinone A J and Liang C 2013 J. Am. Chem. Soc. 135 975
[13] Wang H, Hood Z D, Xia Y N and Liang C D 2016 J. Mater. Chem. A 4 8091
[14] Hood Z D, Wang H, Pandian A S, Peng R, Gilroy K D, Chi M F, Liang C D and Xia Y N 2018 Adv. Energy Mater. 8 1800014
[15] Choi S, Lee S, Park J, Nichols W T and Shin D 2018 Appl. Surf. Sci. 444 10
[16] Bertau M, Müller A, Fröhlich P, Katzberg M, Büchel K H, Moretto H-H and Werner 2013 Industrielle Anorganische Chemie, 4th edn. (Weinheim:Wiley-VCH)
[17] Kazutomi Y and Nobuhiko I (E.P.) 0802159B1[1997-04-14]
[18] Yoshikatsu S and Minoru S (E.P.) 1681263B1[2004-10-15]
[19] Schlenk W and Bergmann E 1928 Justus Liebigs Ann. Chem. 463 1
[20] Scott N D, Walker J F and Hansley V L 1936 J. Am. Chem. Soc. 58 2442
[21] Connelly N G and Geiger W E 1996 Chem. Rev. 96 877
[22] Xu R, Yue J, Liu S, Tu J, Han F, Liu P and Wang C 2019 ACS Energy Lett. 4 1073
[23] Phuc N H H, Morikawa K, Totani M, Muto H and Matsuda A 2016 Solid State Ionics 285 2
[24] Phuc N H H, Morikawa K, Mitsuhiro T, Muto H and Matsuda A 2017 Ionics 23 2061
[25] Cai K, Song M K, Cairns E J and Zhang Y 2012 Nano Lett. 12 6474
[26] Nan C, Lin Z, Liao H, Song M K, Li Y and Cairns E J 2014 J. Am. Chem. Soc. 136 4659
[27] Suo L, Zhu Y, Han F, Gao T, Luo C, Fan X, Hu Y S and Wang C 2015 Nano Energy 13 467
[28] Wang S, Zhang Y, Zhang X, Liu T, Lin Y H, Shen Y, Li L and Nan C W 2018 ACS Appl. Mater. Interfaces 10 42279
[29] Zhao F, Sun Q, Yu C, Zhang S, Adair K, Wang S, Liu Y, Zhao Y, Liang J, Wang C, Li X, Li X, Xia W, Li R, Huang H, Zhang L, Zhao S, Lu S and Sun X 2020 ACS Energy Lett. 5 1035
[30] Koç T, Marchini F, Rousse G, Dugas R and Tarascon J M 2021 ACS Appl. Energy Mater. 4 13575
[31] Lim H D, Yue X J, Xing X, Petrova V, Gonzalez M, Liu H D and Liu P 2018 J. Mater. Chem. A 6 7370
[32] Ito S, Nakakita M, Aihara Y, Uehara T and Machida N 2014 J. Power Sources 271 342
[33] Phuc N H H, Totani M, Morikawa K, Muto H and Matsuda A 2016 Solid State Ionics 288 240
[1] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[2] Understanding the battery safety improvement enabled by a quasi-solid-state battery design
Luyu Gan(甘露雨), Rusong Chen(陈汝颂), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(11): 118202.
[3] Anionic redox reaction mechanism in Na-ion batteries
Xueyan Hou(侯雪妍), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(9): 098801.
[4] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[5] Probing component contributions and internal polarization in silicon-graphite composite anode for lithium-ion batteries with an electrochemical-mechanical model
Yue Chen(陈约), Fuliang Guo(郭福亮), Lufeng Yang(杨陆峰), Jiaze Lu(卢嘉泽), Danna Liu(刘丹娜), Huayu Wang(王华宇), Jieyun Zheng(郑杰允), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(7): 078201.
[6] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[7] Analysis on diffusion-induced stress for multi-layer spherical core-shell electrodes in Li-ion batteries
Siyuan Yang(杨思源), Chuanwei Li(李传崴), Zhifeng Qi(齐志凤), Lipan Xin(辛立攀), Linan Li(李林安), Shibin Wang(王世斌), and Zhiyong Wang(王志勇). Chin. Phys. B, 2021, 30(9): 098201.
[8] In situ formed FeS2@CoS cathode for long cycling life lithium-ion battery
Xin Wang(王鑫), Bojun Wang(汪博筠), Jiachao Yang(杨家超), Qiwen Ran(冉淇文), Jian Zou(邹剑), Pengyu Chen(陈鹏宇), Li Li(李莉), Liping Wang(王丽平), and Xiaobin Niu(牛晓滨). Chin. Phys. B, 2021, 30(8): 088201.
[9] Electron density distribution of LiMn2O4 cathode investigated by synchrotron powder x-ray diffraction
Tongtong Shang(尚彤彤), Dongdong Xiao(肖东东), Qinghua Zhang(张庆华), Xuefeng Wang(王雪锋), Dong Su(苏东), and Lin Gu(谷林). Chin. Phys. B, 2021, 30(7): 078202.
[10] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
[11] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[12] DFT study of solvation of Li + /Na + in fluoroethylene carbonate/vinylene carbonate/ethylene sulfite solvents for lithium/sodium-based battery
Qi Liu(刘琦, Guoqiang Tan(谭国强), Feng Wu(吴锋), Daobin Mu(穆道斌), and Borong Wu(吴伯荣). Chin. Phys. B, 2021, 30(3): 038203.
[13] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[14] Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading
Zi-Han Liu(刘子涵), Yi-Lan Kang(亢一澜), Hai-Bin Song(宋海滨), Qian Zhang(张茜), and Hai-Mei Xie(谢海妹). Chin. Phys. B, 2021, 30(1): 016201.
[15] Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator
Zhao Yan(闫昭), Hongyi Pan(潘弘毅), Junyang Wang(汪君洋), Rusong Chen(陈汝颂), Fei Luo(罗飞), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2020, 29(8): 088201.
No Suggested Reading articles found!