Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 086108    DOI: 10.1088/1674-1056/ac65f3

Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses

Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙)
School of Materials Science and Engineering, Central South University, Changsha 410083, China
Abstract  We report computer simulations on the oscillatory of CuZr metallic glasses at zero temperature with different shear amplitudes. In small system a homogenous shear deformation is found, while in large system an inhomogeneous shear deformation is found with a shear band formed. Concomitantly, spatial correlation of irreversible displacement exhibits an isotropic and exponential decay in the case of homogeneous deformation, whereas a mixed power-law and exponential decay in the case of anisotropic and inhomogeneous deformation. By projecting the azimuthal-dependent correlation function onto the spherical harmonics, we found a strong polar symmetry that accounts for the emerged shear band, and a weaker quadrupolar symmetry that accounts for the elastic filed generated by Eshelby inclusions. By this, we conclude that the anisotropy and decaying formula of the plastic correlation are dominated by the homogeneity or inhomogeneity for the deformation in the metallic glasses.
Keywords:  metallic glasses      mechanical property      molecular dynamics  
Received:  09 March 2022      Revised:  07 April 2022      Accepted manuscript online:  11 April 2022
PACS:  61.43.Dq (Amorphous semiconductors, metals, and alloys) (Metallic glasses)  
  62.20.fg (Shape-memory effect; yield stress; superelasticity)  
  62.20.fq (Plasticity and superplasticity)  
Fund: Project supported by the Natural Science Foundation of Hunan Province, China (Grant No. 2021JJ30833).
Corresponding Authors:  Hailong Peng     E-mail:

Cite this article: 

Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙) Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses 2022 Chin. Phys. B 31 086108

[1] Wang W H, Dong C and Shek C H 2004 Mater. Sci. Eng. R. 44 45
[2] Schun C A, Hufnagel T C and Ramamurty U 2007 Acta Mater. 55 4067
[3] Sun B A and Wang W H 2015 Prog. Mater. Sci. 74 211
[4] Peng H L, Li M Z and Wang W H 2011 Phys. Rev. Lett. 106 135503
[5] Fan Z and Ma E 2021 Nat. Commun. 12 1506
[6] Wei D, Yang J, Jiang M Q, Wei B C, Wang Y J and Dai L H 2019 Phys. Rev. B 99 014115
[7] Baggioli M, Kriuchevskyi I, Sirk T W and Zaccone A 2021 Phys. Rev. Lett. 127 015501
[8] Cheng Y Q and Ma E 2011 Prog. Mater. Sci. 56 379
[9] Maloney C and Lemaitre A 2004 Phys. Rev. Lett. 93 016001
[10] Lemaitre A and Caroli C 2009 Phys. Rev. Lett. 103 065501
[11] Feng S, Qi L, Wang L, Pan S, Ma M, Zhang X, Li G and Liu R 2015 Acta Mater. 95 236
[12] Tian Z L, Wang Y J, Chen Y and Dai L H 2017 Phys. Rev. B 96 094103
[13] Şopu D, Stukowski A, Stoica M and Scudino S 2017 Phys. Rev. Lett. 119 195503
[14] Qu R T, Liu Z Q, Wang G and Zhang Z F 2015 Acta Mater. 91 19
[15] Cubuk E D, Ivancic R J S, et al. 2017 Science 358 1033
[16] Jana R and Pastewka L 2019 J. Phys.:Mater. 2 045006
[17] Chikkadi V, Wegdam G, Bonn D, Nienhuis B and Schall P 2011 Phys. Rev. Lett. 107 198303
[18] Chikkadi V and Schall P 2012 Phys. Rev. E 85 031402
[19] Mandal S, Chikkadi, Nienhuis, Raabe D, Schall P and Varnik F 2013 Phys. Rev. E 88 022129
[20] Varnik F, Mandal S, Chikkadi V, Denisov D, Olsson P, Vagberg D, Raabe D and Schall P 2014 Phys. Rev. E 89 040301
[21] Eshelby J D 1957 Proc. R. Soc. London 241 376
[22] Nicolas A, Rottler J and Barrat J L 2014 Eur. Phys. J. E 37 50
[23] Puosi F, Rottler J and Barrat J L 2016 Phys. Rev. E 94 032604
[24] Leishangthem P, Parmar A D S and Sastry S 2017 Nat. Commun. 8 14653
[25] Fiocco D, Foffi G and Sastry S 2013 Phys. Rev. E 88 020301
[26] Regev I, Weber J, Reichhardt C, Dahmen K A and Lookman T 2015 Nat. Commun. 6 8805
[27] Mendelev M I, Kramer M J, Ott R T, Sordelet D J, Yagodin D and Popel P 2009 Phil. Mag. 89 967
[28] Maloney C E and Lemaitre A 2006 Phys. Rev. E 74 016118
[29] Plimpton S 1995 J. Comp. Phys. 117 1
[30] Li H, Liu H and Peng H 2020 J. Non-Cryst. Solids 539 120069
[31] Regev I, Lookman T and Reichhardt 2013 Phys. Rev. E 88 062401
[32] Yu H B, Shen X, Wang Z, Gu L, Wang W H and Bai H Y 2012 Phys. Rev. Lett. 108 015504
[33] Peng H L, Li M Z and Wang W H 2013 Appl. Phys. Lett. 102 131903
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[7] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[8] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[9] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!