Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国)1, Shuangkui Guang(光双魁)1, Haidong Zhou(周海东)2, Hong Zhu(朱弘)1, and Xuefeng Sun(孙学峰)1,3,†
1 Department of Physics, Key Laboratory of Strongly-Coupled Quantum Matter Physics(CAS), University of Science and Technology of China, Hefei 230026, China; 2 Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200, USA; 3 Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
Abstract Low-temperature thermal conductivity (), as well as the magnetic properties and specific heat, are studied for the frustrated zigzag spin-chain material SrErO by using single-crystal samples. The specific heat data indicate the long-range antiferromagnetic transition at K and the existence of strong magnetic fluctuations. The magnetizations at very low temperatures for magnetic field along the axis (spin chain direction) or the axis reveal the field-induced magnetic transitions. The shows a strong dependence on magnetic field, applied along the axis or the axis, which is closely related to the magnetic transitions. Furthermore, high magnetic field induces a strong increase of . These results indicate that thermal conductivity along either the axis or the axis are mainly contributed by phonons, while magnetic excitations play a role of scattering phonons.
Fund: We thank Jichuan Wu for helps on experiments. Project supported by the National Natural Science Foundation of China (Grant Nos. U1832209 and 11874336). The work at the University of Tennessee (H D Zhao) was supported by the NSF with Grant No. NSF-DMR-2003117.
Corresponding Authors:
Xuefeng Sun
E-mail: xfsun@ustc.edu.cn
Cite this article:
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰) Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4 2022 Chin. Phys. B 31 087505
[1] Haldane F D M 1983 Phys. Rev. Lett.50 1153 [2] Haldane F D M 1983 Phys. Lett. A93 464 [3] Fan Y and Yu R 2020 Chin. Phys. B29 057505 [4] Zhao B, Takahashi J and Sandvik A W 2020 Chin. Phys. B29 057506 [5] Wu L S, Gannon W J, Zaliznyak I A, Tsvelik A M, Brockmann M, Caux J S, Kim M S, Qiu Y, Copley J R D, Ehlers G, Podlesnyak A and Aronson M C 2016 Science352 1206 [6] Shen Y, Li Y D, Wo H, Li Y, Shen S, Pan B, Wang Q, Walker H C, Steffens P, Boehm M, Hao Y Q, Quintero-Castro D L, Harriger L W, Frontzek M D, Hao L, Meng S Q, Zhang Q M, Chen G and Zhao J 2016 Nature540 559 [7] Castelnovo C, Moessner R and Sondhi S 2008 Nature451 42 [8] Karunadasa H, Huang Q, Ueland B G, Lynn J W, Schiffer P, Regan K A and Cava R J 2005 Phys. Rev. B71 144414 [9] Petrenko O A, Balakrishnan G, Wilson N R, de Brion S, Suard E and Chapon L C 2008 Phys. Rev. B78 184410 [10] Hayes T J, Balakrishnan G, Deen P P, Manuel P, Chapon L C and Petrenko O A 2011 Phys. Rev. B84 174435 [11] Hayes T J, Young O, Balakrishnan G and Petrenko O A 2012 J. Phys. Soc. Jpn.81 024708 [12] Zhao X, Zhao Z Y, Liu X G and Sun X F 2016 Sci. China-Phys. Mech. Astron.59 117501 [13] Hess C 2007 Eur. Phys. J. Spec. Top.151 73 [14] Sologubenko A V, Lorenz T, Ott H R and Friemuth A 2007 J. Low Temp. Phys.147 387 [15] Yamashita M, Nakata N, Senshu Y, Masaki N, Yamamoto H M, Kato R, Shibauchi T and Matsuda Y 2010 Science328 1246 [16] Li N, Huang Q, Yue X Y, Chu W J, Chen Q, Choi E S, Zhao X, Zhou H D and Sun X F 2020 Nat. Commun.11 4216 [17] Rao X, Hussain G, Huang Q, Chu W J, Li N, Zhao X, Dun Z, Choi E S, Asaba T, Chen L, Li L, Yue X Y, Wang N N, Cheng J G, Gao Y H, Shen Y, Zhao J, Chen G, Zhou H D and Sun X F 2021 Nat. Commun.12 4949 [18] Li Q J, Zhao Z Y, Fan C, Zhang F B, Zhou H D, Zhao X and Sun X F 2013 Phys. Rev. B87 214408 [19] Gu C C, Zhao Z Y, Chen X L, Lee M, Choi E S, Han Y Y, Ling L S, Pi L, Zhang Y H, Chen G, Yang Z R, Zhou H D and Sun X F 2018 Phys. Rev. Lett.120 147204 [20] Che H L, Zhao Z Y, Rao X, Chu L G, Li N, Chu W J, Gao P, Yue X Y, Zhou Y, Li Q J, Huang Q, Choi E S, Han Y Y, He Z Z, Zhou H D, Zhao X and Sun X F 2020 Phys. Rev. Materials4 054406 [21] de Réotier P D, Yaouanc A, Chapuis Y, Curnoe S H, Grenier B, Ressouche E, Marin C, Lago J, Baines C and Giblin S R 2012 Phys. Rev. B86 104424 [22] Malkin B Z, Nikitin S I, Mumdzhi I E, Zverev D G, Yusupov R V, Gilmutdinov I F, Batulin R, Gabbasov B F, Kiiamov A G, Adroja D T, Young O and Petrenko O A 2015 Phys. Rev. B89 094415 [23] Mariano S, Ricardo P, Antonio S and Roberto E L 2016 Braz. J. Phys.46 206 [24] Tari A 2003 Specific Heat of Matter at Low Temperatures (London:Imperial College Press) [25] Li H F, Wildes A, Hou B, Zhang C, Schmitz B, Meuffels P, Roth G and Bruckel T 2014 RSC Adv.4 53602 [26] Fennell A, Pomjakushin V Y, Uldry A, Delley B, Prévost B, Désilets-Benoit A, Bianchi A D, Bewley R I, Hansen B R, Klimczuk T, Cava R J and Kenzelmann M 2014 Phys. Rev. B89 224511 [27] Prévost B, Gauthier N, Pomjakushin V Y, Delley B, Walker H C, Kenzelmann M and Bianchi A D 2018 Phys. Rev. B98 144428 [28] Selke W 1988 Phys. Rep.170 213 [29] Gauthier N, Fennell A, Prvost B, Uldry A C, Delley B, Sibille R, Dsilets-Benoit A, Dabkowska H A, Nilsen G J, Regnault L P, White J S, Niedermayer C, Pomjakushin V, Bianchi A D and Kenzelmann M 2017 Phys. Rev. B95 134430 [30] Wen J J, Tian W, Garlea V O, Koohpayeh S M, McQueen T M, Li H F, Yan J Q, Rodriguez-Rivera J A, Vaknin D and Broholm C L 2015 Phys. Rev. B91 054424 [31] Kassan-ongly F A 2001 Phase Transitions74 353 [32] Taherkhani F, Daryaei E, Abroshan H, Akbarzadeh H, Parsafar G and Fortunelli A 2011 Phase Transitions84 77 [33] Cheffings T H, Lees M R, Balakrishnan G and Petrenko O A 2013 J. Phys.:Condens. Matter25 256001 [34] Berman R 1976 Thermal Conduction in Solids (Oxford:Oxford University Press) [35] Li N, Huang Q, Brassington A, Yue X Y, Chu W J, Guang S K, Zhou X H, Gao P, Feng E X, Cao H B, Choi E S, Sun Y, Li Q J, Zhao X, Zhou H D and Sun X F 2021 Phys. Rev. B104 104403 [36] Fortune N A, Huang Q, Hong T, Ma J, Choi E S, Hannahs S T, Zhao Z Y, Sun X F, Takano Y and Zhou H D 2021 Phys. Rev. B103 184425 [37] Zhao Z Y, Li Q J, Liu X G, Rao X, Che H L, Chu L G, He Z Z, Zhao X and Sun X F 2019 Phys. Rev. B99 224428 [38] Song J D, Wang X M, Zhao Z Y, Wu J C, Zhao J Y, Liu X G, Zhao X and Sun X F 2017 Phys. Rev. B95 224419 [39] Sun X F, Tsukada I, Suzuki T, Komiya S and Ando Y 2005 Phys. Rev. B72 104501 [40] Sun X F, Taskin A A, Zhao X, Lavrov A N and Ando Y 2008 Phys. Rev. B77 054436 [41] Mcclintock P V E, Morton I P, Orbach R and Rosenberg H M 1967 Proc. R. Soc. London, Ser. A298 359 [42] Metcalfe M J and Rosenberg H M 1972 J. Phys. C5 450 [43] Lacroix C, Mendels P and Mila F 2011 Introduction to Frustrated Magnetism:Materials, Experiments, Theory, Vol. 164 (New York:Springer) [44] Naruse K, Kawamata T, Ohno M, Matsuoka Y, Sudo H, Nagasawa H, Hagiya Y, Sasaki T and Koike Y 2014 J. Phys.:Conf. Ser.568 042014
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.