Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 074203    DOI: 10.1088/1674-1056/ac5618
RAPID COMMUNICATION Prev   Next  

A novel demodulation method for transmission using nitrogen-vacancy-based solid-state quantum sensor

Ruixin Bai(白瑞昕)1, Xinyue Zhu(朱欣岳)2, Fan Yang(杨帆)3, Tianran Gao(高天然)1, Ziran Wang(汪子然)1, Linyan Yu(虞林嫣)1, Jinfeng Wang(汪晋锋)2, Li Zhou(周力)1, and Guanxiang Du(杜关祥)1,†
1 College of Telecommunication&Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210000, China;
2 College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210000, China;
3 College of Automation&College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210000, China
Abstract  Diamond based quantum sensing is a fast-emerging field with both scientific and technological significance. The nitrogen-vacancy (NV) center, a crystal defect in diamond, has become a unique object for microwave sensing applications due to its excellent stability, long spin coherence time, and optical properties at ambient condition. In this work, we use diamond NV center as atomic receiver to demodulate on-off keying (OOK) signal transmitted in broad frequency range (2 GHz-14 GHz in a portable benchtop setup). We proposed a unique algorithm of voltage discrimination and demonstrated audio signal transceiving with fidelity above 99%. This diamond receiver is attached to the end of a tapered fiber, having all optic nature, which will find important applications in data transmission tasks under extreme conditions such as strong electromagnetic interference, high temperatures, and high corrosion.
Keywords:  NV center      demodulate OOK signal      high-frequency range      audio signal transceiving  
Received:  21 November 2021      Revised:  07 February 2022      Accepted manuscript online:  17 February 2022
PACS:  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  07.55.Ge (Magnetometers for magnetic field measurements)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB2012600).
Corresponding Authors:  Guanxiang Du     E-mail:  duguanxiang@njupt.edu.cn

Cite this article: 

Ruixin Bai(白瑞昕), Xinyue Zhu(朱欣岳), Fan Yang(杨帆), Tianran Gao(高天然), Ziran Wang(汪子然), Linyan Yu(虞林嫣), Jinfeng Wang(汪晋锋), Li Zhou(周力), and Guanxiang Du(杜关祥) A novel demodulation method for transmission using nitrogen-vacancy-based solid-state quantum sensor 2022 Chin. Phys. B 31 074203

[1] Li Y, Gao B, Zhang X and Huang K 2020 IEEE Access 8 13282
[2] Rappaport T S, Sun S, Mayzus R, Zhao H, Azar Y, Wang K, Wong G N, Schulz J K, Samimi M and Gutierrez F 2013 IEEE Access 1 335
[3] Roh W, Seol J Y, Park J, Lee B, Lee J, Kim Y, Cho J, Cheun K and Aryanfar F 2014 IEEE Commun. Mag. 52 106
[4] Uwaechia A N and Mahyuddin N M 2020 IEEE Access 8 62367
[5] Al-Ogaili F and Shubair R M 2016 proceedings of the 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 1003
[6] Zhong Y, Yang Y, Zhu X, Dutkiewicz E, Shum K M and Xue Q 2017 IEEE Electron Dev. Lett. 38 626
[7] Guo Y J, Da Xu K, Liu Y and Tang X 2018 IEEE Access 6 10249
[8] Shaman H and Hong J S 2007 IEEE Microwave Wireless Components Letters 17 193
[9] Jung S and Yang S I 2010 Proceedings of the 2010 Asia-Pacific Microwave Conference, 1059
[10] Novgorodov V, Freisleben S, Hornsteiner J, Schmachtl M, Vorotnikov B, Heide P and Vossiek M 2009 Proceedings of the 2009 Asia Pacific Microwave Conference, 2072
[11] Takai T, Iwamoto H, Takamine Y, Yamazaki H, Fuyutsume T, Kyoya H, Nakao T, Kando H, Hiramoto M and Toi T 2016 Proceedings of the 2016 IEEE International Ultrasonics Symposium (IUS), 1
[12] Bogner A, Bauder R, Timme H J, Reccius C, Weigel R and Hagelauer A 2019 Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), 1685
[13] Moe C, Olsson R, Patel P, Tang Z, D'agati M, Winters M, Vetury R and Shealy J 2020 Proceedings of the 2020 IEEE International Ultrasonics Symposium (IUS), 1
[14] Thalhammer R, Fattinger G, Handtmann M and Marksteiner S 2006 Proceedings of the 2006$ IEEE MTT-S International Microwave Symposium Digest, 390
[15] Appel P, Ganzhorn M, Neu E and Maletinsky P 2015 New J. Phys. 17 112001
[16] Dong M M, Hu Z Z, Liu Y, Yang B, Wang Y J and Du G X 2018 Appl. Phys. Lett. 113 131105
[17] Stepanov V, Cho F H, Abeywardana C and Takahashi S 2015 Appl. Phys. Lett. 106 063111
[18] Chen G B, He W H, Dong M M, Zhao Y and Du G X 2020 IEEE Sensors Journal 20 2440
[19] Chen G, Hui Y, Sun J, He W and Du G 2020 Chin. Phys. Lett. 37 114203
[20] Robledo L, Bernien H, Van Der Sar T and Hanson R 2011 New J. Phys. 13 025013
[21] Maekawa S and Fukuyama H 1981 J. Phys. Soc. Jpn. 50 2516
[1] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[2] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[3] Widely tunable single-photon source with high spectral-purity from telecom wavelength to mid-infrared wavelength based on MgO:PPLN
Chang-Wei Sun(孙昌伟), Yu Sun(孙宇), Jia-Chen Duan(端家晨), Guang-Tai Xue(薛广太), Yi-Chen Liu(刘奕辰), Liang-Liang Lu(陆亮亮), Qun-Yong Zhang(张群永), Yan-Xiao Gong(龚彦晓), Ping Xu(徐平), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2021, 30(10): 100312.
[4] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
[5] Speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving
Xin-Ping Dong(董新平), Xiao-Jing Lu(路晓静), Ming Li(李明), Zheng-Yin Zhao(赵正印), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(4): 044214.
[6] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
[7] Bidirectional highly-efficient quantum routing in a T-bulge-shaped waveguide
Jia-Hao Zhang(张家豪), Da-Yong He(何大永), Gang-Yin Luo(罗刚银), Bi-Dou Wang(王弼陡), and Jin-Song Huang(黄劲松). Chin. Phys. B, 2021, 30(3): 034204.
[8] Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings
Shuai Yue(岳帅), Xiang-Fa Zhou(周祥发), and Zheng-Wei Zhou(周正威). Chin. Phys. B, 2021, 30(2): 026402.
[9] Detection and quantification of entanglement with measurement-device-independent and universal entanglement witness
Zhi-Jin Ke(柯芝锦), Yi-Tao Wang(王轶韬), Shang Yu(俞上), Wei Liu(刘伟), Yu Meng(孟雨), Zhi-Peng Li(李志鹏), Hang Wang(汪航), Qiang Li(李强), Jin-Shi Xu(许金时), Ya Xiao(肖芽), Jian-Shun Tang(唐建顺), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(8): 080301.
[10] Experimental demonstration of tight duality relation inthree-path interferometer
Zhi-Jin Ke(柯芝锦), Yu Meng(孟雨), Yi-Tao Wang(王轶韬), Shang Yu(俞上), Wei Liu(刘伟), Zhi-Peng Li(李志鹏), Hang Wang(汪航), Qiang Li(李强), Jin-Shi Xu(许金时), Jian-Shun Tang(唐建顺), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(5): 050307.
[11] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[12] Research on co-propagation of QKD and classical communication by reducing the classical optical power
Ru-Shi He(何如适), Mu-Sheng Jiang(江木生), Yang Wang(汪洋), Ya-Hui Gan(甘亚辉), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2019, 28(4): 040303.
[13] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[14] Finite-size analysis of continuous-variable quantum key distribution with entanglement in the middle
Ying Guo(郭迎), Yu Su(苏玉), Jian Zhou(周健), Ling Zhang(张玲), Duan Huang(黄端). Chin. Phys. B, 2019, 28(1): 010305.
[15] Implementation of quantum phase gate between two atoms via Rydberg antiblockade and adiabatic passage
Xi Tan(谭曦), Jin-Lei Wu(吴金雷), Can Deng(邓灿), Wei-Jian Mao(毛伟建), Hai-Tao Wang(王海涛), Xin Ji(计新). Chin. Phys. B, 2018, 27(10): 100307.
No Suggested Reading articles found!