Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 080301    DOI: 10.1088/1674-1056/ab9288
GENERAL Prev   Next  

Detection and quantification of entanglement with measurement-device-independent and universal entanglement witness

Zhi-Jin Ke(柯芝锦)1,2, Yi-Tao Wang(王轶韬)1,2, Shang Yu(俞上)1,2, Wei Liu(刘伟)1,2, Yu Meng(孟雨)1,2, Zhi-Peng Li(李志鹏)1,2, Hang Wang(汪航)1,2, Qiang Li(李强)1,2, Jin-Shi Xu(许金时)1,2, Ya Xiao(肖芽)3, Jian-Shun Tang(唐建顺)1,2, Chuan-Feng Li(李传锋)1,2, Guang-Can Guo(郭光灿)1,2
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Department of Physics, Ocean University of China, Qingdao 266100, China
Abstract  

Entanglement is the key resource in quantum information processing, and an entanglement witness (EW) is designed to detect whether a quantum system has any entanglement. However, prior knowledge of the target states should be known first to design a suitable EW, which weakens this method. Nevertheless, a recent theory shows that it is possible to design a universal entanglement witness (UEW) to detect negative-partial-transpose (NPT) entanglement in unknown bipartite states with measurement-device-independent (MDI) characteristic. The outcome of a UEW can also be upgraded to be an entanglement measure. In this study, we experimentally design and realize an MDI UEW for two-qubit entangled states. All of the tested states are well-detected without any prior knowledge. We also show that it is able to quantify entanglement by comparing it with concurrence estimated through state tomography. The relation between them is also revealed. The entire experimental framework ensures that the UEW is MDI.

Keywords:  entanglement witness      entanglement detection      entanglement quantification      measurement-device-independent  
Received:  15 January 2020      Revised:  22 April 2020      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0302700), the National Natural Science Foundation of China (Grant Nos. 11674304, 11822408, 11774335, 61490711, 11474267, 11821404, and 91321313), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2017492), the Foundation for Scientific Instrument and Equipment Development of Chinese Academy of Sciences (Grant No. YJKYYQ20170032), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. QYZDY-SSW-SLH003), and the Fundamental Research Funds for the Central Universities, China (Grant No. WK2470000026).

Corresponding Authors:  Jian-Shun Tang, Chuan-Feng Li     E-mail:  tjs@ustc.edu.cn;cfli@ustc.edu.cn

Cite this article: 

Zhi-Jin Ke(柯芝锦), Yi-Tao Wang(王轶韬), Shang Yu(俞上), Wei Liu(刘伟), Yu Meng(孟雨), Zhi-Peng Li(李志鹏), Hang Wang(汪航), Qiang Li(李强), Jin-Shi Xu(许金时), Ya Xiao(肖芽), Jian-Shun Tang(唐建顺), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿) Detection and quantification of entanglement with measurement-device-independent and universal entanglement witness 2020 Chin. Phys. B 29 080301

[1] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[2] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[3] Ekert A K 19911991 Phys. Rev. Lett. 67 661
[4] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[5] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[6] Zyczkowski K, Horodecki P, Sanpera A and Lewenstein M 1998 Phys. Rev. A 58 883
[7] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[8] Nakano T, Piani M and Adesso G 2013 Phys. Rev. A 88 012117
[9] Vidal G and Tarrach R 1999 Phys. Rev. A 59 141
[10] van Enk S J, Lutkenhaus N and Kimble H J 2007 Phys. Rev. A 75 052318
[11] Skwara P, Kampermann H, Kleinmann M and Bruss D 2007 Phys. Rev. A 76 012312
[12] Moroder T, Guehne O, Beaudry N, Piani M and Luetkenhaus N 2010 Phys. Rev. A 81 052342
[13] Seevinck M and Uffink J 2007 Phys. Rev. A 76 042105
[14] Shahandeh F, Hall M J W and Ralph T C 2017 Phys. Rev. Lett. 118 150505
[15] Chruscinski D and Sarbicki G 2014 J. Phys. A:Math. Theor. 47 483001
[16] Chruscinski D and Sarbicki G 2014 J. Phys. A:Math. Theor. 47 483001
[17] Horodecki M, Horodecki P and Horodecki R 1998 Phys. Rev. Lett. 80 5239
[18] Horodecki M, Horodecki P and Horodecki R 1996 Phys. Rev. A 223 1
[19] Xu P, Yuan X, Chen L K, Lu H, Yao X C, Ma X F, Chen Y A and Pan J W 2014 Phys. Rev. Lett. 112 140506
[20] Verbanis E, Martin A, Rosset D, Lim C C W, Thew R T and Zbinden H 2016 Phys. Rev. Lett. 116 190501
[21] Branciard C, Rosset D, Liang Y C and Gisin N 2013 Phys. Rev. Lett. 110 060405
[22] Eisert J, Brandao F G S L and Audenaert K M R 2007 New J. Phys. 9 46
[23] Verstraete F 2002 A study of entanglement in quantum information theory, Ph.D. Dissertation (Leuven:Katholieke Universiteit)
[24] Sun K, Ye X J, Xu J S, Xu X Y, Tang J S, Wu Y C, Chen J L, Li C F and Guo G C 2016 Phys. Rev. Lett. 116 160404
[25] Bowles J, Hirsch F, Quintino M T and Brunner N 2016 Phys. Rev. A 93 022121
[26] Xiao Y, Ye X J, Sun K, Xu J S, Li C F and Guo G C 2017 Phys. Rev. Lett. 118 140404
[27] Vaidman L and Yoran N 1999 Phys. Rev. A 59 116
[28] Nielsen M A 1999 Phys. Rev. Lett. 83 436
[29] Vidal G 1999 Phys. Rev. Lett. 83 1046
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[3] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[4] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[5] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[6] Performance analysis of continuous-variable measurement-device-independent quantum key distribution under diverse weather conditions
Shu-Jing Zhang(张淑静), Chen Xiao(肖晨), Chun Zhou(周淳), Xiang Wang(汪翔), Jian-Shu Yao(要建姝), Hai-Long Zhang(张海龙), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(2): 020301.
[7] Measurement-device-independent quantum cryptographic conferencing with an untrusted source
Rui-Ke Chen(陈瑞柯), Wan-Su Bao(鲍皖苏), Yang Wang(汪洋), Hai-Ze Bao(包海泽), Chun Zhou(周淳), Mu-Sheng Jiang(江木生), Hong-Wei Li(李宏伟). Chin. Phys. B, 2017, 26(1): 010302.
[8] Hong-Ou-Mandel interference with two independent weak coherent states
Hua Chen(陈华), Xue-Bi An(安雪碧), Juan Wu(伍娟), Zhen-Qiang Yin(银振强), Shuang Wang(王双), Wei Chen(陈巍), Zhen-Fu Han(韩正甫). Chin. Phys. B, 2016, 25(2): 020305.
[9] Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum
Wang Le (王乐), Zhao Sheng-Mei (赵生妹), Gong Long-Yan (巩龙延), Cheng Wei-Wen (程维文). Chin. Phys. B, 2015, 24(12): 120307.
[10] Macroscopic inequivalent entanglement witness in Heisenberg spin chain
Zhang Ting(张婷), Chen Ping-Xing(陈平形), and Li Cheng-Zu(李承祖). Chin. Phys. B, 2009, 18(4): 1346-1351.
[11] Dynamics of the entanglement witness for three qubits in common environment
Lu Huai-Xin(逯怀新). Chin. Phys. B, 2007, 16(7): 1878-1882.
No Suggested Reading articles found!