Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 084208    DOI: 10.1088/1674-1056/ac4a68
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples

Pibin Bing(邴丕彬)1,†, Guifang Wu(武桂芳)1, Qing Liu(刘庆)1, Zhongyang Li(李忠洋)1, Lian Tan(谭联)1, Hongtao Zhang(张红涛)1, and Jianquan Yao(姚建铨)1,2
1 College of Electric Power, North China University of Water Resources and Electric Power, Zhengzhou 450045, China;
2 College of Precision Instrument and Opto-Electronics Engineering, Institute of Laser and Opto-Electronics, Tianjin University, Tianjin 300072, China
Abstract  The optical control ability of photonic crystal fiber (PCF) is a distinctive property suitable for improving sensing and plasma performance. This article proposes a dual-core D-channel PCF sensor that can detect two samples simultaneously, which effectively solves the problems of coating difficulty and low wavelength sensitivity. The PCF has four layers of air holes, which dramatically reduces the optical fiber loss and is more conducive to the application of sensors in actual production. In addition, by introducing dual cores on the upper and lower sides of the central air hole, reducing the spacing between the core and the gold nanolayer, a stronger evanescent field can be generated in the cladding air hole. The optical fiber sensor can detect the refractive index of two samples simultaneously with a maximum sensitivity of 21300 nm/RIU. To the best of our knowledge, the sensitivity achieved in this work is the highest sensitivity with the dual sample synchronous detection sensors. The detection range of the refraction index is 1.35-1.41, and the resolution of the sensor is 4.695×10-6. Overall, the sensor will be suitable for medical detection, organic chemical sensing, analyte detection, and other fields.
Keywords:  photonic crystal fiber      surface plasma resonance      sensor  
Received:  07 November 2021      Revised:  27 December 2021      Accepted manuscript online:  12 January 2022
PACS:  42.81.Pa (Sensors, gyros)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61601183 and 31671580), the Key Technologies Research and Development Program of Henan Province, China (Grant No. 202102210390 and 222102210242), and Young Backbone Teachers in University of Henan Province, China (Grant No. 2020GGJS099).
Corresponding Authors:  Pibin Bing     E-mail:  bing463233@163.com

Cite this article: 

Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨) High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples 2022 Chin. Phys. B 31 084208

[1] Zhang Y J, Tian F J, Su Z L, Bai R L, Li L, Yang X H and Zhang J Z 2020 Appl. Opt. 59 779
[2] Wu J J, Li S G, Liu Q and Shi M 2017 Chin. Phys. B 26 114209
[3] Liu C, Yang L, Liu Q, Wang F M, Sun Z J, Sun T, Mu H W and Chu P K 2018 Plasmonics 13 779
[4] Xia F, Song H, Zhao Y, Zhao W M, Wang Q, Wang X Z, Wang B T and Dai Z X 2020 Measurement 164 108083
[5] Liu C, Wang J W, Wang F M, Su W Q, Yang L, Lv J W, Fu G L, Li X L, Liu Q, Sun T and Chu P K 2020 Opt. Commun. 464 125496
[6] Li F, He M H, Zhang X D, Chang M and Wu Z Z 2020 Opt. Fiber Technol. 54 102082
[7] Rifat A A, Ahmed R, Mahdiraji G A and Adikan F R M 2017 IEEE Sens. J. 17 2776
[8] Kaur V and Singh S 2019 Opt. Fiber Technol. 48 159
[9] Hossain M B, Mahendiran T V, Abdulrazak L F, Mehedi I M, Hossain M A and Rana M M 2020 Opt. Quant. Electron. 52 446
[10] Guo X, Han L Y, Liu F and Li S T 2020 Optik 218 164796
[11] Momota M R and Hasan M R 2018 Opt. Mater. 76 287
[12] Wang H Y, Yan X, Li S G, An G W and Zhang X N 2016 Sensors-Basel 16 1
[13] Wang G Y, Lu Y, Yang X C, Duan L C and Yao J Q 2019 Appl. Opt. 58 5800
[14] Paul A K, Sarkar A K, Rahman A B S and Khaleque A 2018 IEEE Sens. J. 18 5761
[15] Zhang Y T, Zhou C, Xia L, Yu X and Liu D M 2011 Opt. Express 19 22863
[16] Abrar I, Firoz H and Rifat A A 2021 J. Opt. Soc. Am. B 38 3055
[17] Azzam S I, Hameed M F O, Shehata R E A, Heikal A M and Obayya S S A 2016 Opt. Quant. Electron. 48 142
[18] Yasli A, Ademgil H, Haxha S and Aggoun A 2020 IEEE Photon. J. 12 1
[19] Bing P B, Sui J L, Wu G F, Guo X Y, Li Z Y, Tan L and Yao J Q 2020 Plasmonics 15 1071
[20] Lu M D, Peng W, Liu Q, Liu Y and Li L X 2017 Opt. Express 25 8563
[21] Lv Z G and Teng H 2021 Chin. Phys. B 30 044209
[22] Kaur V and Singh S 2019 J. Comput. Electron. 18 319
[23] Zhang Y X, Yuan J H and Qu Y W 2020 Chin. Phys. B 29 034208
[24] Wang F M, Sun Z J, Sun T, Liu C and Bao L Y 2018 J. Opt. 47 288
[25] Liu B L, Lu Y, Yang X C and Yao J Q 2016 Opt. Eng. 55 117104
[26] Fan Z K, Fang S B, Li S G and Wei Z Y 2019 Chin. Phys. B 28 094209
[27] Gangwar R K and Singh V K 2017 Plasmonics 12 1367
[28] Hasan M R, Akter S, Rifat A A, Rana S, Ahmed K and Ahmed R 2017 IEEE Sens. J. 18 133
[29] Bing P B, Wu G F, Sui J L, Zhang H T, Tan L, Li Z Y and Yao J Q 2020 Optik 224 165522
[30] Liu C, Su W Q, Wang F M, Li X L, Yang L, Sun T, Mu H W and Chu P K 2019 J. Mod. Opt. 66 1
[31] Al Mahfuz M, Hossain M A, Haque E, Hai N H, Namihira Y and Ahmed F 2020 IEEE Sens. J. 20 7692
[32] Lou J B, Cheng T L and Li S G 2019 Opt. Fiber Technol. 48 110
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[6] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[7] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[8] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[9] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[10] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[11] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[12] MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation
Bing Zhang(张冰), Congzhen Hu(胡从振), Youze Xin(辛有泽), Yaoxin Li(李垚鑫), Zhuoqi Guo(郭卓奇), Zhongming Xue(薛仲明), Li Dong(董力), Shanzhe Yu(于善哲), Xiaofei Wang(王晓飞), Shuyu Lei(雷述宇), and Li Geng(耿莉). Chin. Phys. B, 2022, 31(5): 058503.
[13] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[14] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[15] Effect of anode area on the sensing mechanism of vertical GaN Schottky barrier diode temperature sensor
Ji-Yao Du(都继瑶), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(4): 047701.
No Suggested Reading articles found!