Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 084207    DOI: 10.1088/1674-1056/ac728f

A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency

Xue-Peng Li(李雪鹏)1,4, Jing Yang(杨晶)1,2,3,†, Meng-Shuo Zhang(张梦硕)3, Tian-Li Yang(杨天利)1,4, Xiao-Jun Wang(王小军)1,2,3, and Qin-Jun Peng(彭钦军)1,2,3
1 Key Laboratory of Solid State Laser, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
2 Key Laboratory of Functional Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
3 Institute of Optical Physics and Engineering Technology, Qilu Zhongke, Jinan 250000, China;
4 University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  A high-efficiency and high-power vertical-cavity surface-emitting laser (VCSEL) side-pumped rod Nd:YAG laser with temperature adaptability are demonstrated. The VCSEL side-pumped laser module is designed and optimized. Five VCSEL arrays are symmetrically located around the laser rod and a large size diffused reflection chamber is designed to ensure a uniform pump distribution. Furthermore, the absorbed pump power distribution of the rod is simulated to verify the uniformity of the pump absorption. Finally, a proof-of-principle experiment is performed in short linear cavity laser with single laser module. A continuous-wave output power of 658 W at 1064 nm is obtained, the corresponding optical-to-optical efficiency is 52.6%, and the power variations are ±0.7% over 400 s and ±3.1% over the temperature range from 16 ℃ to 26 ℃. To the best of our knowledge, this is the highest output power and the highest optical-to-optical efficiency ever reported for VCSEL pumped solid-state lasers. By inserting a telescopic module into the cavity and optimizing the TEM00 mode volume, the average beam quality is measured to be M2=1.34 under an output power of 102 W. The experimental results reveal that such a high power rod laser module with temperature stability is appropriate or field applications.
Keywords:  rod laser      VCSEL-pumped      high-efficiency      temperature adaptability  
Received:  23 February 2022      Revised:  17 May 2022      Accepted manuscript online:  24 May 2022
PACS:  42.55.Xi (Diode-pumped lasers)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
Fund: The authors would like to thank Prof. Da-Fu Cui for his helpful discussion in the manuscript modification.
Corresponding Authors:  Jing Yang     E-mail:

Cite this article: 

Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军) A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency 2022 Chin. Phys. B 31 084207

[1] Morgan R A, Hibbs-Brenner M K, Marta T M, Walterson R A, Bounnak S, Kalweit E L and Lehman J A 1995 IEEE Photon. Technol. Lett. 7 441
[2] Imada M, Chutinan A, Noda S and Mochizuki M 2002 Phys. Rev. B 65 195306
[3] Hirose K, Liang Y, Kurosaka Y, Watanabe A, Sugiyama T and Noda S 2014 Nat. Photon. 8 406
[4] Yu Z, Hou X, Zhou Q, Zhou C, Wang Z, Yang Y, Zhu R and Chen W 2013 Chin. J. Lasers 40 0602003
[5] Bai J, Liu Y, Zhong C, Meng J, Shi J, Wang M, Meng J, Hou X and Chen W 2019 Chin. J. Lasers 46 0101004
[6] Goldberg L, McIntosh C and Cole B 2011 Opt. Express 19 4261
[7] Leeuwen R V, Xiong Y H, Seurin J F, Xu G Y, Miglo A, Wang Q, Xu B, Zou W X, Li D Z, Wynn J D, Khalfin V and Ghosh C L 2012 Proc. SPIE 8381 83810I
[8] Li X P, Zhang X D, Yang J, Zhou Y X, Wang Y P, Di P C, Liu J, Liu K, Wang X J, Peng Q J and Xu Z Y 2020 IEEE Photon. Technol. Lett. 32 434
[9] Di P C, Li X P, Yang J, Wang R J, Wang X J, Liu K, Cui D F and Peng Q J 2021 IEEE Photon. Technol. Lett. 33 395
[10] Zhang X D, Li X P, Zhou Y X, Yang J and Liu J 2019 Appl. Thermal Eng. 162 114212
[11] Furuta K, Kojima T, Fujikawa S and Nishimae J 2005 Appl. Opt. 44 4119
[12] Cui Q J, Peng Q J, Zhang H B, Yang X Do, Bo Y, Guo X J, Zhou Y, Lu Y F, Cui D F and Xu Z Y 2008 Chin. Phys. Lett. 25 3991
[13] Lee K, Kim Y, Lee S, Kwon J H, Gwak J S and Yi J 2013 Appl. Opt. 52 5967
[14] Cho C Y, Huang T L, Cheng H P, Huang K F and Chen Y F 2016 Opt. Express 24 1
[15] Song Y J, Xu Y Z, Meng S, Jing X X, Shao C F, Song Z X, Zong N, Wang Z M, Bo Y, Wang X J, Lin Z S and Peng Q J 2021 Opt. Lett. 46 2425
[16] Yu X, Dong L Z, Lai B H, Yang P, Liu Y, Kong Q F, Yang K J, Tang G M and Xu B 2017 Appl. Opt. 56 1730
[17] Wang C, Wei H, Jiang Y E, Wang J F, Qiao Z, Guo J T, Fan W and Li X C 2016 Chin. Opt. Lett. 14 121402
[18] Yoshida S, Shimizu K, Tahil H and Tanaka I 2016 IEEE J. Quantum Electron 30 160
[19] Feng Y, Bi Y, Xu Z Y and Zhang G Y 2003 Proc. SPIE 4969 227
[1] Application of millimeter-sized polymer cylindrical lens array concentrators in solar cells
Yao-Ju Zhang(张耀举), Yi-Jie Li(李艺杰), Jie Lin(林洁), Chao-Long Fang(方朝龙), Si-Yuan Liu(刘思远). Chin. Phys. B, 2018, 27(5): 058801.
[2] Adiabatic cooling for cold polar molecules on a chip using a controllable high-efficiency electrostatic surface trap
Li Sheng-Qiang (李胜强), Xu Liang (许亮), Xia Yong (夏勇), Wang Hai-Ling (汪海玲), Yin Jian-Ping (印建平). Chin. Phys. B, 2014, 23(12): 123701.
No Suggested Reading articles found!